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Human listeners are able to selectively attend to target speech in a noisy environment
with multiple-people talking. Using recordings of scalp electroencephalogram (EEG),
this study investigated how selective attention facilitates the cortical representation of
target speech under a simulated “cocktail-party” listening condition with speech-on-
speech masking. The result shows that the cortical representation of target-speech
signals under the multiple-people talking condition was specifically improved by selective
attention relative to the non-selective-attention listening condition, and the beta-band
activity was most strongly modulated by selective attention. Moreover, measured with
the Granger Causality value, selective attention to the single target speech in the
mixed-speech complex enhanced the following four causal connectivities for the beta-
band oscillation: the ones (1) from site FT7 to the right motor area, (2) from the
left frontal area to the right motor area, (3) from the central frontal area to the right
motor area, and (4) from the central frontal area to the right frontal area. However, the
selective-attention-induced change in beta-band causal connectivity from the central
frontal area to the right motor area, but not other beta-band causal connectivities,
was significantly correlated with the selective-attention-induced change in the cortical
beta-band representation of target speech. These findings suggest that under the
“cocktail-party” listening condition, the beta-band oscillation in EEGs to target speech is
specifically facilitated by selective attention to the target speech that is embedded in the
mixed-speech complex. The selective attention-induced unmasking of target speech
may be associated with the improved beta-band functional connectivity from the central
frontal area to the right motor area, suggesting a top-down attentional modulation of the
speech-motor process.

Keywords: selective attention, speech unmasking, long-term neural activities, neural network, motor theory,
informational masking
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INTRODUCTION

The “cocktail-party” problem (Cherry, 1953) indicates the
astonishing ability of human listeners to recognize target speech
in noisy environments with multiple-people talking. It has been
confirmed that selective attention plays a critical role in this
perceptual/cognitive capacity (e.g., Brungart, 2001; Freyman
et al., 2001, 2004; Roman et al., 2003; Li et al., 2004; Bidet-Caulet
et al., 2007; Ezzatian et al., 2011; Golumbic et al., 2012; Mesgarani
and Chang, 2012). On the other hand, non-selective attention
provides more generalized and sustain alertness for preparing
the emergence of high-priority signals (Posner and Petersen,
1990, 2012). The relationship between selective attention and
non-selective attention has been an attractive issue in the visual
research field (e.g., Coull et al., 1998; Matthias et al., 2010), but
has not been systematically investigated in the auditory research
field.

Recently, a few studies on how selective attention affects the
cortical representation of target speech have been reported (e.g.,
Lalor and Foxe, 2010; Ding and Simon, 2012, 2013; Golumbic
et al., 2013; Kong et al., 2014). Particularly, under “cocktail-
party” listening conditions, selective attention modulates low-
frequency oscillations of cortical responses to speech stimuli,
exhibiting both enhanced tracking of target-speech signals and
enhanced suppression of masker-speech signals (Kerlin et al.,
2010; Lalor and Foxe, 2010; Power et al., 2010, 2012; Mesgarani
and Chang, 2012; O’Sullivan et al., 2014). It is of interest to know
how the neural representation of speech signals under “cocktail-
party” conditions is affected by shifting non-selective attention to
selective attention.

It has been proposed that low-frequency (alpha and beta
bands) oscillations of cortical activation mainly carries top-
down modulation information, while high-frequency (gamma)
oscillations mainly carries bottom-up information (Wang, 2010;
Bastos et al., 2012; Weiss and Mueller, 2012; Bressler and
Richter, 2015; Friston et al., 2015; Lewis and Bastiaansen, 2015).
Particularly, top-down signals that come to lower-level brain
structure underlies the attentional processing that is associated
with the synchrony in the beta frequency band (Hanslmayr et al.,
2007; Womelsdorf and Fries, 2007; Donner and Siegel, 2011;
Bressler and Richter, 2015; Saarinen et al., 2015; Todorovic et al.,
2015). More specifically, for example, beta-band activity is related
to various top-down cognitive/perceptual processes (review in
Engel and Fries, 2010), including prediction (Engel et al., 2001;
Ahveninen et al., 2013; Todorovic et al., 2015; Lewis et al., 2016)
and motor control (Brittain and Brown, 2014; Piai et al., 2015).
Also, the beta-band oscillation represents functional connectivity
between the frontal cortex and motor cortex in attention tasks
(Thorpe et al., 2012; Piai et al., 2015). It is of interest to know
whether neural oscillations in the beta band are involved in
speech unmasking based on selective attention.

The present study investigated whether neural oscillations of
scalp-recoded electroencephalogram (EEGs) to multiple-talker
(voice) speech are modulated by selective attention and what
are the potential underlying mechanisms. EEG signals were
recorded from participants who either selectively attended
to one of the talker’s voice or non-selectively attended to the

whole mixed-speech complex. Four frequency bands (theta:
4–8 Hz; alpha: 8–12 Hz; beta: 13–30 Hz; gamma: 30–48 Hz)
of recorded EEGs were analyzed to reveal both the cortical
representation of speech signals and the differences in cortical
causal connections between the selective attention condition and
the non-selective attention condition. Across EEG correlations
were used to estimate whether the cortical speech representation
becomes more correlated to the attended target speech under
the selective attention condition than the non-selective attention
condition.

MATERIALS AND METHODS

Participants
Twelve younger adults (five males and seven females) with
the mean age of 23.6 years old (from 19 to 25 years old)
were recruited from Peking University as the participants in
this study. They provided informed consent to participate
in this study and were paid a modest stipend for their
participation. All the participants were right-handed native
Mandarin Chinese speakers with normal and balanced (no
more than 15 dB difference between the two ears) pure-
tone hearing thresholds between 125 and 8000 Hz. The
participants gave their written informed consent for participation
in this study. The experimental procedures used in this study
were approved by the Committee for Protecting Human and
Animal Subjects of the Department of Psychology at Peking
University.

Speech Stimuli
The speech stimuli used in this study were Chinese “nonsense”
sentences. “Nonsense” sentences are syntactically correct but not
semantically meaningful (e.g., Freyman et al., 1999; Li et al., 2004;
Yang et al., 2007; Gao et al., 2014). Direct English translations
of these Chinese sentences are similar but not identical to the
English “nonsense” sentences used in previous studies (Helfer,
1997; Freyman et al., 1999, 2004; Li et al., 2004). For example,
the English translation of one Chinese nonsense sentence is
“That corona removes the crest-span bag”. The development of
the Chinese “nonsense” sentences has been described elsewhere
(Yang et al., 2007).

In this study, three different younger-adult female talkers
recited the speech stimuli with different sentences. In a typical
recording trial, during the mixed-speech presentation when
EEGs were recorded (Phase III in Figure 1), the three voices
reciting differences sentences were presented at the same time,
simulating a “cocktail-party” listening condition. Before the 3-
voice mixed-speech presentation, one of the speech stimuli was
presented alone (Phase I in Figure 1) to indicate that either the
repeatedly presented speech in the mixed-speech presentation
was the target speech when the pre-presented speech was recited
by Voice 1 or 2, or there was no particular (single) target speech
in the mixed-speech presentation when the pre-presented speech
was recited by Voice 3. Consequently, the target speech was
determined (when recited by Voice 1 or 2), and the other two
speech stimuli formed the masker. In other words, the target
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FIGURE 1 | Illustration of the six phases within each trial of EEG recordings. Phase I: a trial was started with the presentation of a single-voiced speech
(Voice 1, 2, or 3) to indicate which stimulation condition the present trial belonged to [Voice 1, selective attention to Voice 1 (top panel); Voice 2, selective attention to
Voice 2 (middle panel); Voice 3, non-selective attention to the whole mixed-speech complex (bottom panel)]. Phase II: a period of silence lasting 1 s. Phase III: the
presentation of the mixed three-voiced speech. Phase IV: a period of silence lasting 1.2 s. Phase V and Phase VI: the repetition of Phase III and Phase IV,
respectively. Under the selective-attention condition (with Voice 1 or 2), participants were instructed to press a button if they had heard a wrong words probe (yellow
waves); under the non-selective-attention condition, participants were instructed to press a button if they heard a click probe (yellow waves). The blue, green, and
red waves indicate the single speech of Voice 1, Voice 2, and Voice 3, respectively.

speech was presented against a two-talker-speech background.
Note that two-talker speech maskers were the most effective in
inducing informational masking (Freyman et al., 2004). Each
of the three voices recited different sentences and the sound
pressure level of the three voices were the same. The mean
duration of the sentences was 3.26 s (ranged from 3.1 to 3.5 s).

All speech signals were digitized at a sampling rate of
22.05 kHz using a 24-bit Creative Sound Blaster PCI128
with a built-in anti-aliasing filter (Creative Technology, Ltd.,
Singapore). All the stimuli, including the single-voice speech,
mixed-voice speech, and click sounds were transferred using
a Creative Extigy sound blaster and presented to participants
at the two ears without any interaural time disparities using
two tube-ear inserts (Neuroscan, El Paso, TX, USA). The sound
pressure level of a single voice was set at 56 dB SPL, calibrated
by a Larson Davis Audiometer Calibration and Electroacoustic
Testing System (Audit and System 824, Larson Davis, USA).
Since the sound pressure level of the three voices were the same,
the signal-to-masker ratio (SMR) was−3 dB when a target speech
was determined in the mixed-speech presentation.

Electrophysiological Recordings
Scalp EEG recordings (with the reference electrode located on the
nose) were conducted in a dim double-walled sound-attenuating

booth (EMI Shielded Audiometric Examination Acoustic Suite)
that was equipped with a 64-channel NeuroScan SynAmps
System (Compumedics Limited, Abbotsford, VIC, Australia).
EEG signals were processed with a sample rate of 1000 Hz, on-
line amplified 500 times, and low-pass filtered below 200 Hz.
Eye movements and eye blinks were recorded from electrodes
superior and inferior to the left eye and also at the outer canthi
of the two eyes. The impedances of all the recording electrodes
were kept below 5 k�.

Procedures
The effect of selective attention was estimated by examining the
differences in EEGs between the selective attention condition
and the non-selective attention condition. Voice 1 and Voice
2 were used as either the target voice or the masking voice,
and Voice 3 was used only as the masking voice. There were
three stimulation conditions for the mixed-speech presentation:
(1) Condition 1: selective attention only to Voice 1, (2)
Condition 2: selective attention only to Voice 2, and (3)
Condition 3: non-selective attention to the whole speech complex
(Figure 1).

In addition to the 3-voice mixed-speech presentation, each of
the speech stimuli was presented alone to obtain EEGs to the
single-speech presentation.
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In this study, five “nonsense” sentences from a pool with
totally 360 sentences were randomly assigned to a participants
(two sentences for Voice 1; other two different sentences for
Voice 2; one sentence for Voice 3) and different participants
listened to difference sentences. For each participants, there were
four different mixed-speech presentations.

As shown in Figure 1, each trial contained six phases: In Phase
I, a trial was started with the presentation of a single-voiced
speech (Voice 1, 2, or 3) with the duration about 3.2 s as the cue to
indicate which stimulation condition the present trial belonged to
(Voice 1, Condition 1; Voice 2, Condition 2; Voice 3, Condition
3). Phase I was followed by Phase II, which was a period of silence
lasting 1 s.

In Phase III, the mixed three-voiced speech (about 3.2 s)
was presented (the same stimuli under different conditions for a
participant). Phase IV was also a period of silence lasting 1.2 s.
The Phase V and Phase VI were the repetition of Phase III
and Phase IV, respectively. In other words, the mixed speech
presentation occurred twice in a trial.

Under a selective attention condition (Condition 1 or 2),
participants were instructed to pay attention to the target voice
and press a button if they had heard a novel “predicate-object”
structure presented with the same voice as the to-be-attended
talker (as the false-word probe, with four syllables and the
possibility of 14.2%, Figure 1). Under non-selective attention
condition (Condition 3), the participants were instructed to pay
attention to the whole speech complex and press a button if they
heard a “click” (as the probe with the possibility of 14.2%) at a
random time position (Figure 1). To ensure that the participants
could understand and follow the instructions, a training session
was conducted before EEG recordings. The percent correct in
detecting the probe in each of the participants were required to
be no less than 85%.

In total, there were 96 stimulation presentations for EEG
recordings (after the removal of the presentations with probes)
for each of the three conditions, and these 96 presentations were
randomly assigned into four blocks. Each block contained 24
stimulation presentations for each of the three conditions whose
presenting order was arranged randomly for a participant. It took
about 10 mins to complete one block. To limit eye movements,
participants were also asked to stare a cross in the front in a
trial.

Data Analyses
Using the EEGLAB toolbox (Delorme and Makeig, 2004) in
MATLAB, raw EEG data were filtered by three different band-
pass filters (alpha: 8–12 Hz; beta: 12–30 Hz; gamma: 30–48 Hz),
and then segmented into epochs from −300 to 3500 ms relative
to the onset of a mixed-speech presentation. The baseline
correction was conducted in the period of −300 to 0 ms before
the presentation onset. The epochs that contained more than
±30 µV potential were rejected as artifacts. The rest of epochs
were averaged for each condition to analyze the grange causality
and across EEG correlations.

To avoid the onset and offset (above 3000-ms) effect (Pasley
et al., 2012(a)2(0 1 k
0 0 0 Tfraw)-295 0 Tfr8of
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FIGURE 2 | Under the selective attention condition, the correlation
between the all-site-averaged EEGs to the mixed-speech complex and
the all-site-averaged EEGs to the single speech that was either the
target or the masker speech in the mixed-speech complex. ∗∗p < 0.01,
paired t-test. The error bar indicates the standard errors of the mean.

attention condition (NS) and the EEGs to a single speech
for all the recording sites; the second left column shows the
absolute correlation coefficients between the EEGs to the
mixed speech under the selective attention condition (S) and
the EEGs to the target single speech for all the recording
sites.

To reveal the frequency band that was the most vulnerable
to selective attention, Figure 3 also shows the statistically
thresholded topographical map (the two right columns)
indicating the electrode sites exhibiting significant differences in
absolute correlation coefficient between the selective attention
condition (S) and the non-selective attention condition (NS).
When the p level was 0.05 (the second right column), both
beta- and gamma-band components of EEGs recorded from
a few electrode sites exhibited significant differences between
the two attention conditions. Table 1 shows the p-values for
these electrode sites. Also shown in Table 1, only the beta-band
component of EEGs recorded from the site Cz exhibited a
significant difference between the two attentional conditions
when the p was as low as 0.011. In other words, the beta-band
obtained at the site Cz was the only component exhibiting
a significant difference between the two attention conditions
when the p value was less than 0.020. The right column in
Figure 3 presents the results indicating that the beta-band
component of EEGs at the site Cz was the only one exhibiting
a significant difference between the two attention conditions
when the p value was 0.015 (which was just larger than 0.011
but smaller than 0.020). More in detail, at the p level of 0.015,
the mixed-speech-evoked EEGs at site Cz were significantly
more correlated with the single-speech-evoked EEGs under
the selective attention condition than under the non-selective
attention condition for beta band [t(11) = 3.029, p = 0.011,

FIGURE 3 | The two left columns: for each of the five types of
frequency bands [theta (θ), alpha (α), beta (β), gamma (γ), broad], the
scalp topographical maps showing location distributions of absolute
correlations between the EEGs to the mixed-speech complex and
EEGs to a single speech under either the non-selective attention (NS)
condition or the selective attention (S) condition. The two right columns:
for each of the frequency bands, the recordings sites at which the correlation
difference between the two attention conditions was significant when the p
level was either 0.05 and or 0.015.

TABLE 1 | Electrode sites at which beta and gamma bands were
significantly different between the two attention conditions.

Band Sites df t p

Beta CZ 11 3.029 0.011

Beta F7 11 2.642 0.023

Beta F1 11 2.494 0.030

Beta FT7 11 2.408 0.035

Beta F3 11 2.384 0.036

Beta FP1 11 2.325 0.040

Beta FPZ 11 2.258 0.045

Beta F5 11 2.203 0.050

Gamma PO7 11 2.593 0.025

Gamma PO5 11 2.554 0.027

Gamma P5 11 2.372 0.037

Gamma TP7 11 2.311 0.041

Gamma PO3 11 2.283 0.043

paired t-test], but not for other bands (both p > 0.05, paired
t-test), indicating that the EEG beta-band component at the site
Cz was the most vulnerable to selective attention (Supplementary
Figure S2).
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FIGURE 5 | For each of the four significant GCs shown in Figure 4, the correlation between the beta (β)-band correlation change index induced by
selective attention and the beta (β)-band GC change index induced by selective attention. (A) Causal connectivity from the central frontal area to the right
motor area; (B) Causal connectivity from the left frontal area to the right motor area; (C) Causal connectivity from the central frontal area to the right frontal area;
(D) Causal connectivity from site TP7 to the right motor area. ∗p < 0.05.

alpha-band component or the gamma-band component, in the
mixed-speech-evoked EEGs, was significantly more correlated
with the single-speech-evoked EEGs under the selective attention
condition (where the target single-voice speech was attended)
than under the non-selective attention condition. Thus, the
EEG beta-band component was the most vulnerable to selective
attention.

Beta oscillations are associated with attention and predictions
(Engel and Fries, 2010; Donner and Siegel, 2011; Weiss and
Mueller, 2012; Todorovic et al., 2015), which are critical to
speech cognition. Particularly, the top-down propagation of
predictions reflected by beta oscillations (Engel et al., 2001;
Bastos et al., 2012; Ahveninen et al., 2013; Lewis and Bastiaansen,
2015; Todorovic et al., 2015; Lewis et al., 2016) may be more

critical for selective-attention-induced unmasking of speech,
probably through enhancing the mechanism underlying binding
distributed sets of neurons into a coherent representation of
speech contents (Weiss and Mueller, 2012).

Selective-Attention Facilitated
Beta-Band Causal Connectivity from the
Central Frontal Area to the Right Motor
Area
The results of this study also showed that in total four beta-
band causal connectivities (measured as GCs) were enhanced
by selective attention, including the ones (1) from site FT7
to the right motor area, (2) from the left frontal area to the
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right motor area, (3) from the central frontal area to the
right motor area, and (4) from the central frontal area to
the right frontal area. However, only the selective-attention-
induced enhancement of beta-band GC from the central frontal
area to the right motor area was significantly correlated to
the selective-attention-induced enhancement of the correlation
between beta-band oscillations to the mixed speech complex and
beta-band oscillations to the single speech. The results suggest
that the selective-attention-induced improvement of beta-band
representation of target speech signals is associated with the
enhanced top-down modulation of the motor areas in the right
hemisphere by the central frontal cortical areas. In other words,
selective attention improves speech-related motor processes.
However, due to the low spatial resolution of EEGs, whether the
beta activities over central areas are based on the auditory or
motor activity need further investigation in the future.

The Motor Theory of speech perception proposes that the
interaction between the auditory and motor systems plays an
essential role in speech perception (Liberman et al., 1952, 1967;
Liberman and Mattingly, 1985; for review see Wu et al., 2014).
It has been evident that speech perception activates the motor
cortex (Fadiga et al., 2002; Callan et al., 2004; Wilson et al., 2004;
Pulvermüller et al., 2006; Wilson and Iacoboni, 2006; Meister
et al., 2007; Bever and Poeppel, 2010; Hickok et al., 2011; Elemans
et al., 2015). Thus, under adverse listening conditions (such as
the cocktail-party environment) where the perceptual load is high
(Hickok and Poeppel, 2007; Fridriksson et al., 2008; Bishop and
Miller, 2009), with the involvement of the motor system the
listener can better identify the speaker’s intention and follow the
target stream (Wu et al., 2014).

CONCLUSION

(1) The cortical representation of target-speech signals under
the multiple-people talking condition is specifically
improved by selective attention, and the beta-band EEG
component is the most vulnerable to selective attention.

(2) The selective-attention-induced enhancement of beta-
band causal connectivity from the central frontal area

to the right motor area is correlated with the selective-
attention-induced enhancement of the cortical beta-band
representation of target speech.

(3) Selective attention to a single-voiced target speech, which
is embedded in a mixed-speech complex (with speech-
on-speech masking), improves the cortical representation
of the target speech by facilitating the top-down frontal
modulation of the motor cortical areas.

(4) The unmasking of target speech based on selective attention
may be caused by top-down attentional modulation of the
speech-motor interactions.

AUTHOR CONTRIBUTIONS

YG, QW, and YD: Experimental design, experiment set up,
experiment conduction, data analyses, figure/table construction,
and paper writing. CW and HL: Experimental design, data
analyses, and paper writing. XW: Experimental design and paper
writing. LL: Experimental design, figure/table construction, and
paper writing. TQ: Experimental design, experiment set up, and
paper writing.

ACKNOWLEDGMENTS

This work was supported by supported by the ‘973’ National
Basic Research Program of China (2015CB351800), the National
High Technology Research and Development Program of China
(863 Program: 2015AA016306), the Beijing Municipal Science
and Tech Commission (Z161100002616017), and the National
Natural Science Foundation of China (81501155, 61171186,
61671187).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fnhum.
2017.00034/full#supplementary-material

REFERENCES
Ahveninen, J., Huang, S., Belliveau, J. W., Chang, W. T., and Hämäläinen, M.

(2013). Dynamic oscillatory processes governing cued orienting and allocation
of auditory attention. J. Cogn. Neurosci. 25, 1926–1943. doi: 10.1162/jocn_a_
00452

Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., and Friston,
K. J. (2012). Canonical microcircuits for predictive coding. Neuron 76, 695–711.
doi: 10.1016/j.neuron.2012.10.038

Bever, T. G., and Poeppel, D. (2010). Analysis by synthesis: a (re-) emerging
program of research for language and vision. Biolinguistics 4, 174–200.

Bidet-Caulet, A., Fischer, C., Besle, J., Aguera, P. E., Giard, M. H., and Bertrand, O.
(2007). Effects of selective attention on the electrophysiological representation
of concurrent sounds in the human auditory cortex. J. Neurosci. 27, 9252–9261.
doi: 10.1523/JNEUROSCI.1402-07.2007

Bishop, C. W., and Miller, L. M. (2009). A multisensory cortical network for
understanding speech in noise. J. Cogn. Neurosci. 21, 1790–1804. doi: 10.1162/
jocn.2009.21118

Bressler, S. L., and Richter, C. G. (2015). Interareal oscillatory synchronization
in top-down neocortical processing. Curr. Opin. Neurobiol. 31, 62–66. doi:
10.1016/j.conb.2014.08.010

Brittain, J. S., and Brown, P. (2014). Oscillations and the basal ganglia: motor
control and beyond. Neuroimage 85, 637–647. doi: 10.1016/j.neuroimage.2013.
05.084

Brungart, D. S. (2001). Informational and energetic masking effects in the
perception of two simultaneous talkers. J. Acoust. Soc. Am. 109, 1101–1109.
doi: 10.1121/1.1345696

Callan, D. E., Jones, J. A., Callan, A. M., and Akahane-Yamada, R. (2004). Phonetic
perceptual identification by native-and second-language speakers differentially
activates brain regions involved with acoustic phonetic processing and those
involved with articulatory–auditory/orosensory internal models. Neuroimage
22, 1182–1194. doi: 10.1016/j.neuroimage.2004.03.006

Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and
with two ears. J. Acoust. Soc. Am. 25, 975–979. doi: 10.1121/1.1907229

Coull, J. T., Frackowiak, R. S. J., and Frith, C. D. (1998). Monitoring for
target objects: activation of right frontal and parietal cortices with increasing

Frontiers in Human Neuroscience | www.frontiersin.org 8 February 2017 | Volume 11 | Article 34

http://journal.frontiersin.org/article/10.3389/fnhum.2017.00034/full#supplementary-material
http://journal.frontiersin.org/article/10.3389/fnhum.2017.00034/full#supplementary-material
https://doi.org/10.1162/jocn_a_00452
https://doi.org/10.1162/jocn_a_00452
https://doi.org/10.1016/j.neuron.2012.10.038
https://doi.org/10.1523/JNEUROSCI.1402-07.2007
https://doi.org/10.1162/jocn.2009.21118
https://doi.org/10.1162/jocn.2009.21118
https://doi.org/10.1016/j.conb.2014.08.010
https://doi.org/10.1016/j.conb.2014.08.010
https://doi.org/10.1016/j.neuroimage.2013.05.084
https://doi.org/10.1016/j.neuroimage.2013.05.084
https://doi.org/10.1121/1.1345696
https://doi.org/10.1016/j.neuroimage.2004.03.006
https://doi.org/10.1121/1.1907229
http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


fnhum-11-00034 February 8, 2017 Time: 14:50 # 9

Gao et al. Selective Attention Enhances Beta-Band Oscillation

time on task. Neuropsychologia 36, 1325–1334. doi: 10.1016/S0028-3932(98)
00035-9

Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for analysis
of single-trial EEG dynamics including independent component analysis.
J. Neurosci. Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009

Ding, N., and Simon, J. Z. (2012). Emergence of neural encoding of auditory
objects while listening to competing speakers. Proc. Natl. Acad. Sci. U.S.A. 109,
11854–11859. doi: 10.1073/pnas.1205381109

Ding, N., and Simon, J. Z. (2013). Adaptive temporal encoding leads to a
background-insensitive cortical representation of speech. J. Neurosci. 33, 5728–
5735. doi: 10.1523/JNEUROSCI.5297-12.2013

Donner, T. H., and Siegel, M. (2011). A framework for local cortical oscillation
patterns. Trends Cogn. Sci. 15, 191–199. doi: 10.1016/j.tics.2011.03.007

Elemans, C. P. H., Rasmussen, J. H., Herbst, C. T., Düring, D. N., Zollinger,
S. A., Brumm, H., et al. (2015). Universal mechanisms of sound production
and control in birds and mammals. Nat. Commun. 6:8978. doi: 10.1038/
ncomms9978

Engel, A. K., and Fries, P. (2010). Beta-band oscillations—signalling the status quo?
Curr. Opin. Neurobiol. 20, 156–165. doi: 10.1016/j.conb.2010.02.015

Engel, A. K., Fries, P., and Singer, W. (2001). Dynamic predictions: oscillations
and synchrony in top–down processing. Nat. Rev. Neurosci. 2, 704–716. doi:
10.1038/35094565

Ezzatian, P., Li, L. A., Pichora-Fuller, K., and Schneider, B. (2011). The effect of
priming on release from informational masking is equivalent for younger and
older adults. Ear Hear. 32, 84–96. doi: 10.1097/AUD.0b013e3181ee6b8a

Fadiga, L., Craighero, L., Buccino, G., and Rizzolatti, G. (2002). Speech listening
specifically modulates the excitability of tongue muscles: a TMS study. Eur. J.
Neurosci. 15, 399–402. doi: 10.1046/j.0953-816x.2001.01874.x

Freyman, R. L., Balakrishnan, U., and Helfer, K. S. (2001). Spatial release from
informational masking in speech recognition. J. Acoust. Soc. Am. 109, 2112–
2122. doi: 10.1121/1.1354984

Freyman, R. L., Balakrishnan, U., and Helfer, K. S. (2004). Effect of number of
masking talkers and auditory priming on informational masking in speech
recognition. J. Acoust. Soc. Am. 115, 2246–2256. doi: 10.1121/1.1689343

Freyman, R. L., Helfer, K. S., McCall, D. D., and Clifton, R. K. (1999). The role of
perceived spatial separation in the unmasking of speech. J. Acoust. Soc. Am. 106,
3578–3588. doi: 10.1121/1.428211

Fridriksson, J., Moss, J., Davis, B., Baylis, G. C., Bonilha, L., and Rorden, C. (2008).
Motor speech perception modulates the cortical language areas. Neuroimage 41,
605–613. doi: 10.1016/j.neuroimage.2008.02.046

Friston, K. J., Bastos, A. M., Pinotsis, D., and Litvak, V. (2015). LFP and
oscillations—what do they tell us? Curr. Opin. Neurobiol. 31, 1–6. doi: 10.1016/
j.conb.2014.05.004

Gao, Y.-Y., Cao, S.-Y., Qu, T.-S., Wu, X.-H., Li, H.-F., Zhang, J.-S., et al. (2014).
Voice-associated static face image releases speech from informational masking.
Psych. J. 3, 113–120. doi: 10.1002/pchj.45

Golumbic, E. M. Z., Ding, N., Bickel, S., Lakatos, P., Schevon, C. A., McKhann,
G. M., et al. (2013). Mechanisms underlying selective neuronal tracking of
attended speech at a “Cocktail Party”. Neuron 77, 980–991. doi: 10.1016/j.
neuron.2012.12.037

Golumbic, E. M. Z., Poeppel, D., and Schroeder, C. E. (2012). Temporal context
in speech processing and attentional stream selection: a behavioral and neural
perspective. Brain Lang. 122, 151–161. doi: 10.1016/j.bandl.2011.12.010

Hanslmayr, S., Aslan, A., Staudigl, T., Klimesch, W., Herrmann, C. S., and Bäuml,
K. H. (2007). Prestimulus oscillations predict visual perception performance
between and within subjects. Neuroimage 37, 1465–1473. doi: 10.1016/j.
neuroimage.2007.07.011

Helfer, K. S. (1997). Auditory and auditory-visual perception of clear and
conversational speech. J. Speech Lang. Hear. Res. 40, 432–443. doi: 10.1044/jslhr.
4002.432

Hickok, G., Houde, J., and Rong, F. (2011). Sensorimotor integration in speech
processing: computational basis and neural organization. Neuron 69, 407–422.
doi: 10.1016/j.neuron.2011.01.019

Hickok, G., and Poeppel, D. (2007). The cortical organization of speech processing.
Nat. Rev. Neurosci. 8, 393–402. doi: 10.1038/nrn2113

Kerlin, J. R., Shahin, A. J., and Miller, L. M. (2010). Attentional gain control of
ongoing cortical speech representations in a “cocktail party”. J. Neurosci. 30,
620–628. doi: 10.1523/JNEUROSCI.3631-09.2010

Kong, Y. Y., Mullangi, A., and Ding, N. (2014). Differential modulation of auditory
responses to attended and unattended speech in different listening conditions.
Hear. Res. 316, 73–81. doi: 10.1016/j.heares.2014.07.009

Lalor, E. C., and Foxe, J. J. (2010). Neural responses to uninterrupted natural speech
can be extracted with precise temporal resolution. Eur. J. Neurosci. 31, 189–193.
doi: 10.1111/j.1460-9568.2009.07055.x

Lewis, A. G., and Bastiaansen, M. (2015). A predictive coding framework for rapid
neural dynamics during sentence-level language comprehension. Cortex 68,
155–168. doi: 10.1016/j.cortex.2015.02.014

Lewis, A. G., Schoffelen, J. M., Schriefers, H., and Bastiaansen, M. (2016).
A predictive coding perspective on beta oscillations during sentence-level
language comprehension. Front. Hum. Neurosci. 10:85. doi: 10.3389/fnhum.
2016.00085

Li, L., Daneman, M., Qi, J. G., and Schneider, B. A. (2004). Does the information
content of an irrelevant source differentially affect spoken word recognition
in younger and older adults? J. Exp. Psychol. Hum. Percept. Perform. 30,
1077–1091.

Liberman, A. M., Cooper, F. S., Shankweiler, D. P., and Studdert-Kennedy, M.
(1967). Perception of the speech code. Psychol. Rev. 74, 431–461. doi: 10.1037/
h0020279

Liberman, A. M., Delattre, P., and Cooper, F. S. (1952). The role of selected
stimulus-variables in the perception of the unvoiced stop consonants. Am. J.
Psychol. 65, 497–516. doi: 10.2307/1418032

Liberman, A. M., and Mattingly, I. G. (1985). The motor theory of speech
perception revised. Cognition 21, 1–36. doi: 10.1016/0010-0277(85)90021-6

Matthias, E., Bublak, P., Müller, H. J., Schneider, W. X., Krummenacher, J.,
and Finke, K. (2010). The influence of alertness on spatial and nonspatial
components of visual attention. J. Exp. Psychol. Hum. Percept. Perform. 36,
38–56. doi: 10.1037/a0017602

Meister, I. G., Wilson, S. M., Deblieck, C., Wu, A. D., and Iacoboni, M. (2007).
The essential role of premotor cortex in speech perception. Curr. Biol. 17,
1692–1696. doi: 10.1016/j.cub.2007.08.064

Mesgarani, N., and Chang, E. F. (2012). Selective cortical representation of attended
speaker in multi-talker speech perception. Nature 485, 233–236. doi: 10.1038/
nature11020

O’Sullivan, J. A., Power, A. J., Mesgarani, N., Rajaram, S., Foxe, J. J., Shinn-
Cunningham, B. G., et al. (2014). Attentional selection in a cocktail party
environment can be decoded from single-trial EEG. Cereb. Cortex 25, 1697–
1706. doi: 10.1093/cercor/bht355

Pasley, B. N., David, S. V., Mesgarani, N., Flinker, A., Shamma, S. A., Crone, N. E.,
et al. (2012). Reconstructing speech from human auditory cortex. PLoS Biol.
10:e1001251. doi: 10.1371/journal.pbio.1001251

Piai, V., Roelofs, A., Rommers, J., Dahlslätt, K., and Maris, E. (2015). Withholding
planned speech is reflected in synchronized beta-band oscillations. Front. Hum.
Neurosci. 9:549. doi: 10.3389/fnhum.2015.00549

Posner, M. I., and Petersen, S. E. (1990). The attention system of the human brain.
Annu. Rev. Neurosci. 13, 25–42. doi: 10.1146/annurev.neuro.13.1.25

Posner, M. I., and Petersen, S. E. (2012). The attention system of the human brain:
20 years after. Annu. Rev. Neurosci. 35, 73–89. doi: 10.1146/annurev-neuro-
062111-150525

Power, A. J., Foxe, J. J., Forde, E. J., Reilly, R. B., and Lalor, E. C. (2012). At what
time is the cocktail party? A late locus of selective attention to natural speech.
Eur. J. Neurosci. 35, 1497–1503. doi: 10.1111/j.1460-9568.2012.08060.x

Power, A. J., Lalor, E. C., and Reilly, R. B. (2010). Endogenous auditory spatial
attention modulates obligatory sensory activity in auditory cortex.Cereb. Cortex
21, 1223–1230. doi: 10.1093/cercor/bhq233

Pulvermüller, F., Huss, M., Kherif, F., del Prado Martin, F. M., Hauk, O., and
Shtyrov, Y. (2006). Motor cortex maps articulatory features of speech sounds.
Proc. Natl. Acad. Sci. U.S.A. 103, 7865–7870. doi: 10.1073/pnas.0509989103

Roman, N., Wang, D., and Brown, G. J. (2003). Speech segregation based on sound
localization. J. Acoust. Soc. Am. 114, 2236–2252. doi: 10.1121/1.1610463

Saarinen, T., Jalava, A., Kujala, J., Stevenson, C., and Salmelin, R. (2015). Task-
sensitive reconfiguration of corticocortical 6–20 Hz oscillatory coherence in
naturalistic human performance. Hum. Brain Mapp. 36, 2455–2469. doi: 10.
1002/hbm.22784

Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., and Leahy, R. M. (2011).
Brainstorm: a user-friendly application for MEG/EEG analysis. Comput. Intell.
Neurosci. 2011:879716. doi: 10.1155/2011/879716

Frontiers in Human Neuroscience | www.frontiersin.org 9 February 2017 | Volume 11 | Article 34

https://doi.org/10.1016/S0028-3932(98)00035-9
https://doi.org/10.1016/S0028-3932(98)00035-9
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1073/pnas.1205381109
https://doi.org/10.1523/JNEUROSCI.5297-12.2013
https://doi.org/10.1016/j.tics.2011.03.007
https://doi.org/10.1038/ncomms9978
https://doi.org/10.1038/ncomms9978
https://doi.org/10.1016/j.conb.2010.02.015
https://doi.org/10.1038/35094565
https://doi.org/10.1038/35094565
https://doi.org/10.1097/AUD.0b013e3181ee6b8a
https://doi.org/10.1046/j.0953-816x.2001.01874.x
https://doi.org/10.1121/1.1354984
https://doi.org/10.1121/1.1689343
https://doi.org/10.1121/1.428211
https://doi.org/10.1016/j.neuroimage.2008.02.046
https://doi.org/10.1016/j.conb.2014.05.004
https://doi.org/10.1016/j.conb.2014.05.004
https://doi.org/10.1002/pchj.45
https://doi.org/10.1016/j.neuron.2012.12.037
https://doi.org/10.1016/j.neuron.2012.12.037
https://doi.org/10.1016/j.bandl.2011.12.010
https://doi.org/10.1016/j.neuroimage.2007.07.011
https://doi.org/10.1016/j.neuroimage.2007.07.011
https://doi.org/10.1044/jslhr.4002.432
https://doi.org/10.1044/jslhr.4002.432
https://doi.org/10.1016/j.neuron.2011.01.019
https://doi.org/10.1038/nrn2113
https://doi.org/10.1523/JNEUROSCI.3631-09.2010
https://doi.org/10.1016/j.heares.2014.07.009
https://doi.org/10.1111/j.1460-9568.2009.07055.x
https://doi.org/10.1016/j.cortex.2015.02.014
https://doi.org/10.3389/fnhum.2016.00085
https://doi.org/10.3389/fnhum.2016.00085
https://doi.org/10.1037/h0020279
https://doi.org/10.1037/h0020279
https://doi.org/10.2307/1418032
https://doi.org/10.1016/0010-0277(85)90021-6
https://doi.org/10.1037/a0017602
https://doi.org/10.1016/j.cub.2007.08.064
https://doi.org/10.1038/nature11020
https://doi.org/10.1038/nature11020
https://doi.org/10.1093/cercor/bht355
https://doi.org/10.1371/journal.pbio.1001251
https://doi.org/10.3389/fnhum.2015.00549
https://doi.org/10.1146/annurev.neuro.13.1.25
https://doi.org/10.1146/annurev-neuro-062111-150525
https://doi.org/10.1146/annurev-neuro-062111-150525
https://doi.org/10.1111/j.1460-9568.2012.08060.x
https://doi.org/10.1093/cercor/bhq233
https://doi.org/10.1073/pnas.0509989103
https://doi.org/10.1121/1.1610463
https://doi.org/10.1002/hbm.22784
https://doi.org/10.1002/hbm.22784
https://doi.org/10.1155/2011/879716
http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


fnhum-11-00034 February 8, 2017 Time: 14:50 # 10

Gao et al. Selective Attention Enhances Beta-Band Oscillation

Thorpe, S., D’Zmura, M., and Srinivasan, R. (2012). Lateralization of frequency-
specific networks for covert spatial attention to auditory stimuli. Brain Topogr.
25, 39–54. doi: 10.1007/s10548-011-0186-x

Todorovic, A., Schoffelen, J. M., van Ede, F., Maris, E., and de Lange, F. P. (2015).
Temporal expectation and attention jointly modulate auditory oscillatory
activity in the beta band. PLoS ONE 10:e0120288. doi: 10.1371/journal.pone.
0120288

Wang, X. J. (2010). Neurophysiological and computational principles of cortical
rhythms in cognition. Physiol. Rev. 90, 1195–1268. doi: 10.1152/physrev.00035.
2008

Weiss, S., and Mueller, H. M. (2012). “Too many betas do not spoil the broth”:
the role of beta brain oscillations in language processing. Front. Psychol. 3:201.
doi: 10.3389/fpsyg.2012.00201

Wilson, S. M., and Iacoboni, M. (2006). Neural responses to non-native
phonemes varying in producibility: evidence for the sensorimotor nature of
speech perception. Neuroimage 33, 316–325. doi: 10.1016/j.neuroimage.2006.
05.032

Wilson, S. M., Saygin, A. P., Sereno, M. I., and Iacoboni, M. (2004). Listening to
speech activates motor areas involved in speech production. Nat. Neurosci. 7,
701–702. doi: 10.1038/nn1263

Womelsdorf, T., and Fries, P. (2007). The role of neuronal synchronization in
selective attention. Curr. Opin. Neurobiol. 17, 154–160. doi: 10.1016/j.conb.
2007.02.002

Wu, Z.-M., Chen, M.-L., Wu, X.-H., and Li, L. (2014). Interaction between auditory
system and motor system in speech perception. Neurosci. Bull. 30, 490–496.
doi: 10.1007/s12264-013-1428-6

Yang, Z., Chen, J., Huang, Q., Wu, X., Wu, Y., Schneider, B. A., et al. (2007). The
effect of voice cuing on releasing Chinese speech from informational masking.
Speech Commun. 49, 892–904. doi: 10.1097/AUD.0b013e3181db6dc2

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2017 Gao,Wang, Ding,Wang, Li,Wu, Qu and Li. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 10 February 2017 | Volume 11 | Article 34

https://doi.org/10.1007/s10548-011-0186-x
https://doi.org/10.1371/journal.pone.0120288
https://doi.org/10.1371/journal.pone.0120288
https://doi.org/10.1152/physrev.00035.2008
https://doi.org/10.1152/physrev.00035.2008
https://doi.org/10.3389/fpsyg.2012.00201
https://doi.org/10.1016/j.neuroimage.2006.05.032
https://doi.org/10.1016/j.neuroimage.2006.05.032
https://doi.org/10.1038/nn1263
https://doi.org/10.1016/j.conb.2007.02.002
https://doi.org/10.1016/j.conb.2007.02.002
https://doi.org/10.1007/s12264-013-1428-6
https://doi.org/10.1097/AUD.0b013e3181db6dc2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive

	Selective Attention Enhances Beta-Band Cortical Oscillation to Speech under "Cocktail-Party" Listening Conditions
	Introduction
	Materials And Methods
	Participants
	Speech Stimuli
	Electrophysiological Recordings
	Procedures
	Data Analyses

	Results
	The Effect of Selective Attention on Cortical Representations of Speech Signals against Speech Masking
	Beta-Band Causal Connectivity Enhanced by Selective Attention
	Correlation between Causal Connectivity and Cortical Representation of Speech against Speech Masking

	Discussion
	Selective Attention Improves the Cortical Representation of Target-Speech Signals
	The Beta-Band Component of the EEGs to Speech Is the Most Vulnerable to Selective Attention
	Selective-Attention Facilitated Beta-Band Causal Connectivity from the Central Frontal Area to the Right Motor Area

	Conclusion
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


