T. E c . A. a d I ſa ſa D a . . D c. . a Bſa . . I ſa ſa C ſſ .a. . b . T . S . d

Liang Li,¹ J an H ang,¹ Xihong W, ¹ Jame G. Qi,² and B ce A. Schneide ²

Objectives: | b a റ്റ \$\$, n а 8 c 🕯 ac \$ 6 \$ **88** b b ca 🕏 C a \$6, a 🕏 ab а C. a b a 🕏 C n **េទ** ា ន ន 8 \$ а b a .T st na b තිසි . \$ a . a \$ а C а а **€\$**. T а **3**8. **S** c n \$ \$ a.\$ Sc **S**c n. \$ c 🕏 8 a\$ b ab а **S** c n \$ (C а а n C. \$ C. \$ n a 🕏 ac \$). C а а ₿a B ca 🕏 . aca C а n a cn C saa -.8c a 🕏 \$\$ an b (BIC) b а C C a. C а 8 8 8 8 а а а a BIC \$ a. \$. \$ aca. a a c а m 1 1. а а

S BIC Design: | n . 1. n 8 а а BIC c 10 a 10 а . S C C m 🕏 🕏 (ba = 10 .H ; = 1 s c) ca റ്റ а \$£n .a \$ а a 🕏 а 8 а \$£n .a \$ 8 a. \$ \$ 45 8 а <u>8</u>. | 2, \$ 8 n n а **s**, a s a c a 100 ms h 8 -8 BIC. 8 C \$ 10 h C m 8 8 а а

Results: ⊺ 8 ട m 1 \$ а a. c. a. S C \$ 8 BICS a a.c.a.\$ C ca \$\$ \$ \$ а. m . 2 🕏 \$6 a⊾ \$6.T \$ \$ a. c а a . S c 100 ms BIC a s. a a C ca as a .a.**c**.a.**s**.A.s, b. ₿. ą C BIC යති යනි s8 a**⊾** -s8 m a C а -Stana . M \$ а C a. C **\$ c a c \$ a \$**. ₿b n C а ac 8 \$ **៩៩៩** ៣ b а b а a.c.a.\$.

Conclusions: T a а c as \$ \$ a BIC ca 🕏 a sa **\$\$** ab а \$ а а caca. . T а \$ ab \$ а а C 100 ms BIC as a ลสิ \$, s a а а a 🕏 а а റ്റ а а a, 🕏 6.6 а ଛ as C \$.6 `₿ n ca Sa n а а а а а а \$ \$6. M \$ **€**.\$8a a m**s**. I а а а \$ ₿°a а **\$**\$ n b n **c** b а s a \$ а а s cac b c nb BIC 8 C

¹Depatment of P cholog, Speech and Hea ing Re ea ch Cente, Ke Labo at o on Machine Pe ception, Peking Uni e *i*, Beijing, China; and ²Depatment of P cholog, Cente fo Re ea ch on Biological Commnication S tem, Uni e *i* of To onto at Mi i a ga, Mi i a ga, Onta io, Canada.

a b \$\$ 8 \$ a⊾ \$6. T а m a \$6, c mb \$\$ \$ \$ а ca а n s cac s, s \$ \$ c a C а а а а bassica abassi .\$6 .a\$6 a **Sc** \$. ma а (Ea & Hea ing 2009;30;273 286)

INTRODUCTION

Pe hap the mot int ig ing etion in a dito cene anal i i ho litene a e ableto det ed, ident if, locate, and cha adei e indi id al o nd o ce in noi, e e be ant en i onment hen the ecei e not onl the o nd a e that di ea l come f om a io. o. nd o. ce, b.t al o n. me o. file ed and time-dela ed eflection f om the all, ceiling and α he face (e.g., B egman 1990; Koehnke & Be ing 1996). In ch en i onment, litene, e peciall olde ad l litene, often find i diffic l to poce aco tic ignal (e.g., peech), e entho ghthe can f ng ion ell in ig it ation (e.g., Chee man et al. 1995; D bno et al. 1984; D e no 1983; Gelfand et al. 1988; Go don-Salant & Fit gibbon 1995; Helfe & Wilbe 1990; Nabelek & Robin on 1982; Nabelek 1988; Picho a-F. lle et al. 1995; St. at & Phillip 1996). He e e in etigated he he age-elated dec ea e in ome of the pe cept al p oce e that ppot a dito cene anal i might be cont ib tingt othe diffic It is that olde ad It e pe ience in noi, e e be ant en i onment.

Ad. Sc. Aa,

To pe cept all epa at e at a get f om the backg o nd in e e be ant it ation, the a dito tem of the litene ha to be ablet o diffe entite the g o p of co elated o nd a e that belongtotheta ga (the di ed a e f om the ta ga o ce and it time-dela ed and filte ed eflection) fom o nd a e p od ced b a he o nd o ce (hich ill na be a highl co elated it h the di ect a e emanating f om the taget). In a he od, to efficient 1 p oce the ignal coming f om an attended o nd o ce in a noi, e e be ant en i onment, the a di o tem need to cond at o majo pe cept al ope ation: (1) integrate the direct are from the target or nd it h i co elated eflection; and (2) eg egate the taget o nd a e fom o nd a e gene at ed b α he o ce. If the e a e deficit in the fit ope ation, the o nd eflection themel e, athe than being pe cept all integated it h the o. ce, co. ld plit off (Bla. et & Lindemann 1986) f om the died a e and be pe cei ed a epa at e a dito e ent. If the e a e deficit in the econd ope ation, info mation f om othe o ce might be patiall integated it that of the ta get o ce, leading to conf ion. The efo e, to be capable of determining het he o not to a ef ont, a i ing at diffe ent time and f om diffe ent di ection a e f om the ame

0196/0202/09/3002-0273/0 Ea & Hea ing Cop ight 2009 b Lippincat William & Wilkin P inted in the U.S.A.

o ce o f om diffe ent o ce, the a dio tem ha to be able to ecogni e hen a time-hifted e ion of one a e i highl co elated ith anothe. If the a dio tem of olde ad l a e le capable than tho e of o nge ad l at ecogni ing hen a time-hifted e ion of one a e i co elated ith anothe, the a dio cene of olde ad l ill be mo e cl tte ed and conf ed than that of o nge ad l. Thi might e plain h olde ad l a e e peciall di ad ant aged in highl e e be ant en i onment.

I fan___ Dfc Wa ad I R cn_: T. Pfcd_c E c

When the dela bet een the died a e fom the o ce and one of i eflection i fficient l hot (e.g., 5 10 m o le, depending on the tim 1), all non patial at ibte of the eflection a e pe cept all capt. ed b the di ect a ef ont (e.g., Li et al. 2005), leading to a f ed o nd image ho e point of o igin i pe cei edto be at o nea the location of the o nd o ce. Thi phenomenon i calledt he p ecedence effed beca ethe a efontto a i e fi ttake p ecedence o e dhe co elated a ef ont (Bla et 1997; Li & Y e 2002; Li o k et al. 1999; Wallach et al. 1949). The t ength of thi integ ation in a e e be ant en i onment i la gel de e mined b the dela ba een the died and efleded a e. When thi dela i fficient 1 hot (le than the echoth e hold), the died a e and the eflection a e f ed into a ingle image, in hich the pe cei ed location i at o nea the location of the o ce. The patial e tent of the f ed image all e ceed that ob e ed

in the anechoic en i onment, an effed efe o-350.2(in299.9(the7ge)-395. 4(effec . 4(effec . all en)-452.7(oa24mag tio0TD360(do0TD3G

ti e e ent, one at each ea. When the inte a al co elation a 0.25, 0.50, o 0.75, litene pe cei ed one diff e e ent in the median plane, and to additional one late ali ed mmetit he ped to the median plane. In othe od, the icall compagne, n mbe, and placement of image depend on the deg ee of inte a al co elation. It i not clea, ho e e,

has he there are age-elated change in the abilit to dated o poce inte a al co elation. Ne ethele, e o ld e ped that an age-elated dimin tion in the abilit to deted and poce intea al co elation, e peciall hen one of the a dela ed ith e pect to the othe, co ld lead to a o nd mo e f agment ed a dito cene in olde ad lt, hich o ld inc ea et he diffic 1 of at ending to and p oce ing info mation f om the ta get talke.

U. I fafa Cff am D C 11 a d S.a. S.dF.d

Detecting a co elation bet eent o ignal in the o nd field i ome hat mo e complicated than deted ing a c o -ea co elation nde headphone condition. A me fo the moment that e ha et o lo d peake located 45 deg ee to the left and ight of the litene in an anechoic en i onment, pla ing independent band-limited hite noi e $(g(t) \circ e the)$ left lo d peake and h(t) o e the ight lo d peake), both ha ing band id h W = 10 kH. To implif the it at ion, e can mea e, in the ab ence of the litene, the o nd p e e at the poil ion that o ld be occ. pied b the litene' left and ight ea . Thi i e i alent to a mingthat the head doe not cat a o nd hado othat onl the dela bet een the o nd a i ing at the nea and fa ea need to be con ide ed (at 45 deg ee , the dela , δ , i app o imatel 0.363 m). In that ca e, the ignal a i ing at the poition occ pied b the left ea i g(t)+ h(t - 0.000363), he eat he ignal a i ing at the poition occ pied b ight ea i g(t - 0.000363) + h(t). The no mali ed c o -co elation f nation fo thi ca e i ho n in Fig e 1 (top panel). Note that the no mali ed co -co elation f ng ion hat o peak at $\tau = -0.363$ m and $\tau = 0.363$ m. The et o peak ep e ent the co-co elation bet een the di ed a e a i ing at the nea ea f om an off midline o ce and the ame a e a i ing at the fa ea. Not e that the et o peak ill al a be pe ent hen the e a et o lo d peake mma icall di placed f om the midline.

When the to noi e a e co elated and the left-lo d peake noi e lead the ight-lo d peake noi e b γ econd, the ignal a i ing at the left ea i $g(t) + g(t - \delta - \gamma)$, he ea the ignal a i ing at the ight ea i $g(t - \delta) + g(t - \gamma)$, hen mea ement a etaken in the ab ence of the head. Fig. e 1 (bottom panel) al o plot the no mali ed c o -co elation f ng ion* fo $\gamma = 5$ m and $\delta = 0.363$ m. Ng et hat this co co elation f nation hat o peak on each ide of $\tau = 0$, one co e ponding to the inte a al dela (0.0363 m) and one co e ponding to the dela bet een the co elated o nd pla ed o e the left- and ight-lo d peake (5 m). A the lo d peake dela i dec ea ed, the peak in the c o -co elation f nation ca ed b thi dela hift acco dingl (and become one hen $\tau = 0$), he eather opeak can ed b δ a e naffed ed b an dela bet een the lo d peake. Hence, the litene co. ld di c iminate bet een co elated and indepenco elated o nd coming fom the to lo d peake .

In Fig. e 1, it i a medthat the e i no o nd atten ation beca e of the hado cat b the head. Fig e 2 ho that hen the head-ela ed t an fe f nation a e incl ded in the comp t a ion of the no mali ed c o -co ela ion f na ion, the e i a dec ea e of the height of the peak beca e of the inte a al dela , δ , an enhancement of the peak at $\tau = \gamma m$, and a btantial diminition of the peak at $\tau = -\gamma m$. Ho e e, the dec ea e in the peak ca ed b the inte a al dela a ethe ame fo both independent and co elated noi e hen the o nd hado i con ide ed. A a e 1, the e peak con e no info mation a to he he o not thet o o nd a e co elated. Hence, the onl a to dete mine has he o not the o nd a e co elated fom the c o -co elation f nation i to be able to en ethe peak at $\tau = 5 \text{ m}$.

The *i* ation ill be f the complicated if the lo d peake a e enclo ed in a e e be ant en i onment (e.g., a o ndatten at ing chambe, a the e e in the e e pe iment), hich ill int od ce a he peak ca ed b o nd eflection. Ho e e, a an mbe of t die ha e indicated (e.g., F e man et al. 1999; Kidd a al. 2005; Koehnke & Be ing 1996; Z ek a al.

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

-1.00

1.00

0.75 0.50

0.25

B

A

Normalized Cross Correlation

^{*}To obtain a PDF file ho ing ho the no mali ed c o -co elation f nation in Fig e 1 and 2 e e comp t ed, plea e cont ad B ce Schneide.

2004), the effect of adding the e effection i to inc eare the percept al difficilitie encorate ed b h man oble e and a e nlikel to polide an additional c e that or ld aid them in dictiminating bet een colleated and independent or nd. Finall, i hold be not ed that the collection find ion hold n in Fig. e 1 and 2 a methat the time lial e infinite in diction. Collection find ion compited or earlier of the earl

U. S. cfa I f f c Pa f . . . S. d F. d. D c G f f a d S. a

In the o nd field, the deg ee of co elation bat een the left and ight noi e i al o e ealed b the interference pattern that the creater hen the trop areform add. If a band-limited hite noi e i added to i elf after a delar of γ ec, the long term pore peat motifier m i no longer flat bit ippled (comb file ing, Na in et al. 1979). If the peat m le el of the original noi e i N_0 , the peat m le el of the med noi e ill be $N_0 (2 + 2 \operatorname{co} [2\pi f \gamma])$. Hore e, if the to noi e a e independent, the long term peat m le el i $2N_0$ for all ferencies i him the band id h of the noi e. Hence, hen left and ight correlated a efform add, a ipple pattern ill be observed in the peat m, it has the ate of mod lation being date mined b the dela.

Fig. e 3 plot the long-tem po e ped a at the poition occ pied b the left (top panel) and ight (bottom panel) ea fo a band-limit ed noi e, g(t), (10 kH , $N_0 = 1$) pla ed o e a lo d peake located 45 deg ee to the left of the litene pl an identical e ion dela ed b $\gamma = 1.5$ m locat ed 45 deg ee to the ight of the litene othat the intea al dela i again e alto 0.363 m. If e igno e the o nd hado cat b the head, the ignal a i ing at the left ea i g(t) + g(t - 0.0015 - 0.0015)0.000363) and the ignal a i ing at the ight ea i g(t - t)(0.000363) + g(t - 0.0015). Hence, the po e ped m at the left ea i 2 + 2 co $(2\pi f \times 0.001863)$, and the po e ped m at the ight ea i 2 + 2 co $(2\pi f \times 0.001137)$. B a of cont at, if thet o noi e a e independent (again a ming no head hado effect), the po e pec m ha a nifo m al e of 2 ac o the entire ped m. If the a dito tem e eto compaethe otp t of a ight ea mona al filte cente ed at 440 H to one cente ed at 880 H, the diffe ence bet een the o ld be la ge hen the noi e o.tp.t of the et o file e e co elated and 0 hen the noi e e e independent. Alte nati el, if the a dito tem e eto compa ethe leffand ight-ea mona al filte cente ed at 537 H, the inte a al diffe ence in the otput of the et o filte o ld be la ge hent he left - and ight -lo d peake noi e e co elated and negligible henthe e e independent.

Hence, the a dio tem cold make e of both mona al and bina al peot al ce, a ell a co-ea co elation to determine hethe o not a a effort a i ing form one di ection a a dela ed e ion of anothe a effort that had a i ed pe io 1. Age-elated change in the abilit to detect inte a al peot al difference, a tematic ipple in the mona al peot m, o age-elated change in the abilit to detect an inte a al co elation (e peciall hen the e a a

This depiction a meethat the head cat no o nd hado. If the o nd hado i taken into con ide ation, the difference bet een peak and to gh and the a e age po e change it h ference becare of the HRTF. Hence, Figre 3 depict an pper limit to the finctional a ailabilit of the e mona all and bina all pect all c e.

dela), co ld affect the abilit of olde ad l to pa e the a dito cene a effect i el a o nge ad l.

T.A.P.Sd

In e pe iment 1 of the pe ent t.d., e a e ed the age-elated diffe ence in the abilit to deted a BIC hen b oadband noi e a e pe ented eithe o e headphone o o e lo d peake. Note that hen the BIC i pe ented o e headphone, onl bina al c.e. a e a ailable. Ho e e, hen the ame ignal a e pe ented in the o nd field, the litene co.ld. e comb-filte ing effect to pplement the information obtained th o gh inte a al co elation. Hence, if litene co.ld. e comb-filte ing effect to deted a BIC, e o ld e peato find bate pe formance in the o nd field than nde headphone pe entation.

Ba ed on the e \mathbf{l} of e pe iment 1, in e pe iment 2 e e amined the longet inte a al dela at hich a BIC it h a long d ation (100 m, hich a ell abo ethe BIC-d ation the hold at the e o inte a al dela) a detectable, in both o nge ad \mathbf{l} and olde ad \mathbf{l} . We all o e amined the longet inte lo d peake dela he ethe change of inte o nd co elation co ld be detected to e al ate the deg ee to hich mona al and bina al pect al c e o ld aid in the detection of a BIC.

MATERIALS AND METHODS

E 1 BIC D 1 a. T. 1 d a Z 1I 1 d D a

Pat.c, **a** • Ten o nge ad **k** (6 female, 4 male, 19 21 old, ec. ied f om the Uni e i of To onto a Mi ia ga) and 10 olde ad **k** (3 female, 7 male, 64 75 old, ec. ied f om the local comm ni) paticipated in e pe iment 1. None of the paticipant had an hito of hea ing di o de, and none ed hea ing aid. All paticipant ga e thei iten info med con ent to paticipate in the e pe iment and e e paid a modet tipend fo thei paticipation. The e paticipant did not paticipate in e pe iment 2.

The onge ad 1 and 6 of the 10 olde ad 1 had p etone, ai -cond d ion the hold le than 25 dB HL bet een 0.25 and 3 kH. Fo. olde ad 1 had heating le el a leat a one ofthetet fe encie tha e e la ge than 25 dB HL b t le than 35 dB HL. Hea ingth e hold fo all paticipant e e mmet ical (int e a al diffe ence than 15 dB at each fe enc). Fig e 4 p e ent le a e age hea ing le el fo both age g o p a a f notion of fe enc. The hold fo all of the onge ad l e e ell i hin the no mal ange. On a e age, the olde ad l' th e hold e e 8 to 10 dB poo e than tho e of o nge ad 1 fo fe encie le than 2 kH. Fo fe encie highe than 2 kH, the hold diffe ence inc ea ed and diffe ed b a m ch a 40 dB a the highet f e enc teted. Altho. gh olde ad l ith heating in thi ange a e all efe edto a ha ing clinicall no mal hea ing, the a e bet cha ad e i ed a being in the eal tage of p e b c i . Hence, the e e likel e pe iencing belinical decline in a n mbe of a di o f na ion, incl ding tho e elatedtotempo al p oce ing (e.g., Go don-Salant & Fit gibbon 1995, 1999; Schneide et al. 2002).

S d c a b $\P \bullet D$ ingtet e ion, the paticipant a eated in a chai a the cente of an Ind t ial Aco. tic Compan o nd-atten ated chambe, ho e internal dimension e e 283 cm in length, 274 cm in idth, and 197 cm in height. The eat deca time, hich meased the time o e the fit 10 dB of the deca and a e elated to bjectie j dgment of e e be ance (B adle 1991), e e 0.093, 0.135, 0.090, 0.079, 0.088, and 0.086 ec fo f e encie of 125, 250, 500, 1000, 2000, and 4000 H, e pecti el.

S. **fan, a d d , f** • Ga ian b oadband noi e (band id h = 0 10 kH; ampling a e = 20 kH), in hich d at ion e e 1000 m, e e digit all n he i ed b gene at ing 20,000 independent andom no mal de iate. Hence, the a e age ped m of the e digital noi e a flat o e the egion f om 0 to 10 kH. Thit milli econd, linea on- and off- amp e e applied to each noi e b t. The e digital ignal e e con eted to analog fo m ing T cke -Da i Technologie (TDT) DD1 digital to-analog con ete nde the cont ol of a Dell comp te ith a Pentim II poce o. The analog o tp t e e lo -pa ed at 10 kH **i**th TDT FT5 file, at en at ed b t op og ammable at en at o (TDT PA4, fo the left and ight channel), and fed into a headphone b ffe (TDT HB5). The otpt fom the headphone b ffe e e eithe t and ced b a pai of balanced headphone (Telephonic TDH-49P) o amplified ia a Ha man/Ka don po e amplifie (HK3370) and then deli e ed f om t o balanced lo d peake (Elect o-Medical In t ment, 40 at). Thet o lo d peake e e in the f ontal a im thal plane at the left and the ight 45 poition mmet ical ith e peqtothe median plane, e peqi el . The ditance ba een each of the t o lo d peake to the cente of the paticipant'

head a 169 cm. Th ea le el fo a eated All the ingle- o hich a ell abo fo both o nge an tim lation condition placed at the locatio hent he pat icipan nom mete e por **Pf. c d f** • T o 1 b oadband noi e lo d peake . The i of the inte al a a noi e. The ight-hea inte al a al o idei noi e e cept fo the middle of the 1000-n pendent noi e egmen the BIC had an e al p one of t o inte al pa adigm. Thet o inte the off a of the fit on each inte al, the noi e co left lo d peake) and the phone (o the ight lo d peak

fo c (o the ight headametime. F e h

noi e o nd e e gene at ed to each t tal. The paticipant' tak a to identif hich of the t o inte al contained the co elation b eak.

The paticipant initiated at ial b p e ing a bitton on the e pone bo. The tating BIC d ation in ateting e ion a 100 m. The BIC d ation a deceaed aften the connectine context e containing the BIC and include at the end of the intension of the intension of the end atheed on none-pp occed e (Le it 1971). The initial tep i e of changing the BIC d ation a 32 m, and the tep i e a attended it heach e e al in direction b a factor of 0.5 ntil the minimum i e of 1 m a eached. Feedback a poided at eacht ial. Attent e ion a terminated aften 12 e e al in direction, and the three hold for that e ion a defined a the aternate at ion for the lat eight e e al . Tet e ion e e epeated for time for each paticipant, and the 2: I 1. d D

• Ten o nge ad l (3 female, 7 man ecited fom the Unie it of Toonto at Mii-(a) and 11 olde ad \mathbf{l} (7 female, 4 male, 63 75) old. ec it ed f om the local comm ni) paticipated in e pe iment 2. None of the paticipant had an hito of hea ing di o de, and none ed hea ing aid. All paticipant ga ethei it en info med con ent to paticipate in the e pe iment and e e paid a modet tipend fo thei paticipation. The cite ia fo paticipation in this e pe iment e et he ame a in e pe iment 1. The e paticipant diffe ed f om tho e in e pe iment 1. Th ee of the female olde paticipant could not eliable detect a long (100 m) BIC, e en tho gh the had imila hea ing le el it hat he olde paticipant. The, data (incl dingtho e of hea ing le el) of the eth ee olde female paticipant a e na epoted he e.

Fig. e 6 p e ent a e age hea ing le el fo both age g o p a a f notion of f e enc. The hold fo all of the o nge ad l e e ell it hint he no mal ange. The olde ad l'the hold e e 8 to 10 dB poo e than tho e of o nge ad l fo f e encie lo e than 2 kH. The the hold diffe ence ince a ed ith f e enc fo f e encie highe than 2 kH. The olde paticipant a e bet cha acte i ed a being in the eal tage of p e b c i. **C** a b \mathbf{V} , **... V** a..., a d d **...** \mathbf{V} • The appaat and mate ial ed in e pe iment 2 e e the ame a tho e ed in e pe iment 1, e cept that (1) tet e e cond c ed in a diffe ent Ind t ial Aco. tic Compan o nd-atten at ed cham-

be (193 cm in lengh, 183 cm in idth, and 198.5 cm in heigh), (2) the analog otpt f om the headphone b ffe e e amplified ia a different po e amplifie (Technic, SA-DX950), and (3) the ditance f om each of the t o lo d peake e to the center of the paticipant' head a 1.03 m. Fo the chamber ed in e periment 2, the eal deca time e e 0.089, 0.035, 0.023, 0.044, 0.059, and 0.025 ec fo f e encie of 125, 250, 500, 1000, 2000, and 4000 H, e peqtiel.

R. c d **f** • T o 1000 m inte al of co elated Ga ian b oadband noi e e p e ented eithe o e headphone o lo d peake . The ight-headphone (lo d peake) noi e in one of the inte al a cop of the left -headphone (lo d peake) noi e. The ight-headphone (lo d peake) noi e in the a he inte al a al o identical to the left-headphone (lo d peake) noi e e cept fo the btit tion of a long (100 m) BIC int od ced into the middle of the 1000 m noi e b impl b tit ting an independent noi e egment in the left o ce. In each t ial, the BIC had e al po ibilit to be andoml a igned to one of the t o inte al of a 2IFC pa adigm. The t o inte al on at ial e e epa at ed b 1000 m. Fo each inte al, the 1000 m noi e coming f om the left headphone (o the left lo d peake) at a led the 1000 m noi e coming f om the ight headphone (o the ight lo d peake) it h the leng h of the inte o nd dela tematicall manip lated (ee belo). That i, the inte o nd dela a appliedtothe hole a efo m bah on a and ongoing potion. Beca e the independent 100 m noi e egment a ociated it h the BIC

a al a int od ced in the cente of the noi e befo e the impoition of the ignal dela, the noo elated egment i elf a dela ed in the ight ea elatie to the left b the ame amo nt a the hole a eform dela. Fe h noi e o nd e e gene at ed fo eacht ial. The paticipant' tak a to ident if hich of the to inte al contained the BIC.

The paticipant initiated at ial b p e ing a b tton on the e pon e bo. The tating inte o nd dela in ateting e ion a 1 m. The inte o nd dela a incea ed afte thee con ecti e co ect identification of the inte al containing the BIC and dec ea ed afte one inco ect identification ing a thee-p-one-do n p oced e (Le it 1971). The initial tep i e of changing the inte o nd dela

a 8 m, and the tep i e a alte ed b a facto of 0.5 it h each e e al of di ection milt he minim m i e of 1 m a eached. Feedback a poided at eacht ial. Atet e ion a teminated afte 12 e e al in di ection, and the the hold fo that e ion a defined a the a e age dela fo the lat eight e e al. Tet e ion e e epeated for time for each paticipant, and the bet th ee the hold e e then a e aged to obtain an e timate of the limit of each paticipant' abilit to to e a efom infomation a ailable in the noi e.

RESULTS

Fig. e 7 ho the g o p a e age of the hotet BIC d ation at hich the BIC co ld be detected nde both the headphone-tim lation condition and the lo d peake -tim lation condition fo the t o age g o p. Unde eithe the

headphone- o the lo d peake - tim lation condition, o nge e e able to deted hote BIC than olde paticipant paticipant, indicating a ed ction in en iti it to the BIC ith age. Unde the headphone-tim lation condition, on a e age, o nge paticipant co ld det ed a BIC app o imatel 4.5 m long (median = 4 m), he ea olde paticipant could detect a BIC hole diation a apploimatel 8.5 m (median = 8.1 m). Unde the lo d peake - tim lation condition, the the hold fo deted ing the BIC a 2.3 m (median = 2.4 m) for the ornge g or p and 3.4 m (median = 3.2 m) fo the olde g o p. The hotet BIC d ation fo indi id al paticipant nde thet o tim lation condition a e ho n in Fig. e 8, Table 1 (fo o nge paticipant) and Table 2 (fo olde paticipant). Note that the e i m ch mo e a iabilit in th e hold fo olde than fo onge ad l, ith fie of the olde ad l haing d ation th e hold i thin the ange of tho e ob e ed fo o nge i h age ha been fo nd in ad l . Thi inc ea e in a iabili

TABLE 1. BIC		10			()					
Participants	SM	SA	CL	CC	WL	IZ	NKN	MSD	VB	
Loudspeaker	4.2	2.3	2.4	2.6	1.0	2.9	1.0	2.4	1.5	
Headphone	8.6	4.5	4.3	3.3	4.0	4.0	2.2	3.9	7.0	

BIC, break in correlation.

 α he t die. Fo e ample, Schneide and Picho a-F lle (2001) ho ed that he ea man olde ad **l** had gap det extin the hold that e e **i** thin the ange fo nd fo o nge ad **l**, a btantial n mbe had the hold in e ce of thi ange.

At o bet een-bjed (onge, olde) b t o thinbjed (headphone, lo d peake) mi ed anal i of a iance (ANOVA) did not e eal a ignificant interaction bet een age g o p (onge, olde) and tim 1 -pe entation t pe (headphone, lo d peake) ($F_{1,18} = 2.890$; MSE = 7.338; p = 0.106) b t did e if that the main effect of tim 1 -pe entation t pe ($F_{1,18} = 18.385$; MSE = 7.338; p < 0.001) and age g o p ($F_{1,18} = 7.087$; MSE = 9.160; p = 0.016) e e both ignificant. Hence, olde ad 1 has e higher the hold than onge ad 1, and the e i in fficient e idence to eject the h pole i that, in the ond field, comb filte ing c e lo e the hold b the ame amont in both onge and olde ad 1 hen the e i no dela bet een left and ight noi e.

An e amination of Table 2 indicate the peence of a potential of the inthe headphone condition (paticipant AM). To check he he thi of the a epon ible for the main effect of age, e epeated the ANOVA in the paticipant emo ed. The main effect of age and condition emained ignificant, and the e a no interaction bet een age and condition. Hence, e ha e clained thi po ible of the in the emaining anal e.

Fo o nge paticipant, the co elation bet een the the hold nde lo d peake p e entation and that nde head-phone p e entation a 0.521, hich a not ignificant ($F_{1,8} = 2.987$; MSE = 0.734; p = 0.122). Fo olde paticipant, the co elation bet eentheth e hold nde lo d peake p e entation and that nde headphone p e entation a 0.104, hich a al o not ignificant ($F_{1,8} = 0.088$; MSE = 3.056; p = 0.774).

To ee hathe the BIC the hold e e elated to a diomatic the hold, e co elated BIC the hold ith p. etone a e age (PTA, a e aged ac o the t o ea) fo both lo -f e encie (0.25 2 kH, LF-PTA), and high-f e encie (3 8 kH, HF-PTA) in both o nge and olde ad l. None of the e co elation e e ignificant in eithe o nge o olde ad l. Fo the o nge ad l, the co elation bat een BIC the hold and LF-PTA e e -0.1 (p > 0.05) and 0.156 (p >0.05) fo headphone and lo d peake p e entation, e pecti el; the co elation bat een BIC the hold and HF-PTA e e 0.541 (p > 0.05) and 0.262 (p > 0.05) fo headphone and lo d peake p e entation, e pecti el. Fo olde ad l, the co elation bet een BIC the hold and LF-PTA e e 0.272 (p > 0.05) and -0.04 (p > 0.05) fo headphone and lo dpeake p e entation, e pecti el; the co elation bet een BIC the hold and HF-PTA e e 0.284 (p > 0.05) and 0.434 (p > 0.05) fo headphone and lo dpeake p e entation, e pecti el. Hence, the e i e little e idence that BIC the hold a e co elated ith eithe lo - o high-f e enc PTA in o nge o olde ad l.

RP 2.3

3.0

E 1. 2: T. Ma. I 1. dD a

Fig. e 9 ho the g o p mean of the longet inte o nd dela at hich o nge o olde paticipant e e able to dated a 100 m BIC. Unde the headphone-tim lation condition, both the mean (13.8 m) and median (11.9 m) the hold fo o nge paticipant e e longe than tho e (mean = 8.6 m; median = 8.7 m) fo olde paticipant. All o, nde the lo d peake - tim lation condition, both the mean (23.5 m) and median (26.1 m) the hold fo o nge paticipant e e longe than tho e (mean = 10.6 m; median = 11.2 m) fo olde paticipant. The the e as a b tantial ed dion in the abilit to deted an inte o nd dela ith age.

At o bet een-bjed (o nge, olde) b t o ithinbjed (headphone, lo d peake p e entation) ANOVA found that the interaction bet een age-g o p and tim 1 -p e entation t pe (headphone o lo d peake) a ignificant ($F_{1,16} =$ 5.722; MSE = 23.349; p = 0.029), a a the main effect of age g o p ($F_{1,16} = 19.959$; MSE = 36.299; p < 0.001), and tim 1 -p e entation t pe ($F_{1,16} = 13.149$; MSE = 23.349; p = 0.002). Separate ANOVA for headphone and lo d peake p e entation ho ed that the age effect a ignificant fo both lo d peake ($F_{1,16} = 20.805$; MSE = 35.579; p < 0.001) and headphone-tim lation condition ($F_{1,16} = 4.899$; MSE = 24.070; p = 0.042). Hence, the interaction effect indicate that the increment in pe for mance going from headphone to lo dpeake condition a lage for o nge than for olde ad t.

To f the e plo ethe nate of the interaction, e plotted the longet dela bate een left and ight noise at hich each indi id al coold dated a 100 m BIC in the ornd field at a f nation of the longet dela the coold dated a 100 m BIC inde headphone condition (Fig. 10). The dated line (lope = 1.0) eptern hat e orld e peat if the e e e no difference bate een headphone and ornd field condition. This figs e hot that all paticipant bit one pe formed bate inde ornd-field condition than inde headphone condition. Patic la l, fit e of the ornge ad lt pe formed makedl

TABLE 2. BIC		1	D	(()					
Participants	BR	AG	ES	BM	JZ	LW	GH	JSF	EW	AM
Loudspeaker	2.8	3.9	4.0	6.1	5.7	3.7	1.0	2.7	1.4	2.4
Headphone	4.0	4.9	4.9	9.5	12.6	6.8	1.8	9.5	12.2	18.7

bete nde ond-field condition than nde headphone condition (tho e ho e data point a e fathet f om the diagonal line). The e e data point a e fathet f om the diagonal line). The e e data point a e fathet f om the data a point a e fathet f om the paticipant one of the longet ondition . Hence, the g eate impo ement in the pe for mance of o nge ad t hen going f om headphone to lo d peake p e entation can be at ib ted to the fact that half of the onge ad t imp o ed ma kedl , he eat the othe half ho

dela fo indi id al paticipant inde each of thet of pe of tim lation condition a e al o ho n in Table 3 (fo o nge paticipant) and Table 4 (fo olde paticipant). Unlike the

ca e fo d ation the hold, he e the e i mo e a iabilit among the o ng than among the olde litene. F. the mo e, the e i no indication that olde ad it benefit f om the lo d peake p e entation, he ea half of the o nge ad it e hibit a la ge benefit f om the lo d peake p e entation.

Fo onge paticipant, the coelation between the the hold inde headphone-tim lation condition and that inde loid peake -tim lation condition a 0.214, hich a not ignificant ($F_{1,8} = 0.383$; MSE = 65.362; p = 0.553). Fo olde paticipant, the coelation between the threshold inde headphone-tim lation condition and that inde loid peake -tim lation condition a 0.422, hich a allow not ignificant ($F_{1,6} = 1.299$; MSE = 2.919; p = 0.298).

To ee he he the maim m inte ond dela/ e e elated to a diomet icth e hold, e co elated the inte o nd i h PTA fo ba h lo (0.25 2 kH, LF-PTA), and dela high (3 8 kH, HF-PTA) fe encie. Fo the o/nge ad l, the co elation bet eenthe longe t dela at hich a BIC a det eq able and LF-PTA e e 0.288 (p > 0.05) and 0.291 (p >0.05) fo headphone and lo d peake p e entation, e pecti el ; the co elation ba eenthe longe t dela and HF-PTA e e 0.399 (p > 0.05) and 0.276 (p > 0.05) fo headphone and lo d peake p e entation, e pecti el . Fo olde ad l , theco elation bet een the longet dela/ and LF-PTA e e $0.282 \ (p > 0.05) \text{ and } -0.15 \ (p > 0.05) \text{ fo headphone and}$ lo d peake p e entation, e pecti/el; the co elation bet een the longe t dela and HF-PTA e e 0.338 (p > 0.05) and $-0.27 \ (p > 0.05)$ fo headphone and lo d peake p e entation, e pecti el . Hence, the e i e little e idence that the longet inte o nd dela / at hich a 100 m BIC can be det ed ed i co elated it h ét he lo - o high-fe enc PTA in onge o olde ad \mathbf{k}' .

DISCUSSION

T. L. BIC R, $d d D c_{n} a = Z f_{n} I f_{n} - d D a$

In the p'e ent t.d, nde headphone litening condition iththe 0 m inte a al dela, o nge ad it paticipant co. Id de eq a 4.5 m BIC bet een Ga ian boadband noi e (0/10,000 H), hich i light l la ge than the meant h e hold (2.34 m) of the 1/0/1 intea aloo elation change inte al mea ed in eight paticipant (20 35 old) in the t d b Boehnke et al. (2002) ing a b oade band noi e (0 22,050 H), bt malle than the mean bina algap the hold (5.3)m) meased in i paticipant (ho e age eena poided) in the t. d b Ake o d and S mme field (1999) ing bandpa noi e (100 500 H). The e e l confi m that h man litene ih no mal hea ing ha e a high en i i to at an ient BIC hen the inte a al dela i e o. Fo olde ad I teted in the peent t d, thei mean the hold of deted ing the BIC nde the headphone-tim lation condition 8.5 m, hich a ignificant l la ge than that fo а <u>onge paticipant</u>. Olde ad le e al o m ch mo e a iablethan onge ad 1, a patentha ha been pe io 1 noted it h elation to gap detection t die (Schneide & Picho a-F. lle 2001).

Olde ad \mathbf{i} could be le en \mathbf{i} i eto a BIC than o nge ad \mathbf{i} beca e of age-elated ed ation in a diomet ic en iti \mathbf{i} . To in etigate hather the age-elated change in the BIC the hold e e ca ed b age-elated dec ea e in pec-

TABLE 3. T			10		()					
Participants	DR	DV	CL	MR	ZN	TL	RC	FR	SM	СТ
Loudspeaker	25.1	27.1	15.9	12.7	28.6	29.8	32.1	20.1	32.0	11.9
Headphone	24.5	25.6	14.3	11.3	9.0	9.6	12.4	6.5	14.7	10.0

t al en iti it, e co elated the BIC the hold it h a diomet ic the hold epa at el fo o nge and olde ad l at bah high and lo fe encie. The e co elation, ho e e, poided e little e idence fo a elation hip bet een a diomet ic hea ing lo and en it i it to BIC. Hence, it eem mo e likel that lo e in en it i to BIC a e elatedto a he age-elated change in the a dito tem, ch a a lo in ne al nch on . Pe io t die ha e ho n that olde li t ene ith no mal heating hat e malle making le el diffe ence (MLD) than o nge -ad l litene (e.g., G o e e al. 1994; Ol en et al. 1976; Picho a-E lle & Schneide 1991, 1992, 1998; St o. e et al. 1998). Picho a-F. lle and Schneide (1992) ha e ggeted that malle MLD in olde ad l a e ca ed b lo e intempo al nch on bet eenthet o ea (i.e., an inc ea e in tempo al jite; D lach 1972). Hence, age-elated lo e in tempo al nch on co. ld acco. nt fo both malle MLD and highe BICth e hold in olde than in onge ad l.

P e io. f national magnatic e onance imaging and magnatoencephalog aph t die ha e ggeted that in h man the a dito cote i in ol ed in poce ing inte a al co elation (e.g., B dd et al. 2003; Chait et al. 2005; Hall et al. 2005; Zimme & Macal o 2005). Th , it i impotant in ft. e t die to e if het he the e a e age-elated alte ation of the cent al ep e entation of the change in inte a al co elation at the cotical le el.

And he po ibilit i that age-elated change in the abilit to deted a BIC co. ld efled age- elated change in the i e of the tempo al indo o e hich inte a al compa i on occ. Se e al in e tigato ha e p opo ed that bina al compa i on a e pe fo med it hin at empo al indo appliedt ot he input to thet o ea (e.g., Bentein et al. 2001; Moo e et al. 1988). According to thi notion, the a dio tem effecti el integate bina al information falling it hin thi tempo al indo. Hence, hen the e i a change in an inte a al a iable d ing thi indo, thi integation poce ed ce the intenal o effecti e al e of thi change.[‡] Fo e ample, if ob e e e e to cent e the tempo al indo a the midpoint of each of the t o b oadband noi e p e ented on a 2IFC t ial in e pe iment 1 (it ht he BIC occ ing and oml in the cent e of one of the e noi e), the co. ld compa e the inte a al info mation a ailable in thi indo fo each of the to noi e to determine hich one contained the BIC. A ming that o nge and olde ad l e i ed the ame amo n of info mation to each the th e hold fo detecting a BIC (e.g., the ame diffe ence in inte a al co elation), age diffe ence in the hape o id h of the tempo al indo co ld lead to age diffe ence in pe fo mance. Fo e ample, ppo e the patici-

pant in e pe iment 1 applied a ed ang la tempo al indo (a eq ang la indo i ed he et o implif the de c iption of ho age diffe ence intempo al indo i e co. ld acco. nt fo age diffe ence in deteding a BIC) to the time- a ing inte a al co elation. Fo the dictic noi e it hot the BIC, the inte a al co elation o ld be 1.0 fo both age gop, independent of indo i e (a ming that the tempo al indo a malle than the length of the tim 1). Ho e e, the intea al co elation fo a noi e ith a hot BIC ill depend on indo i e. S ppo et he ed ang la indo i e fo o nge and olde ad **l** e e 4 and 8 m, e peq i el. When a 6 m BIC i p e ented, the inte a al co elation of the indo ed ignal o ld be e o fo o nge ad l b t g eate than e o fo olde ad **t** beca e olde ad **t** o ld be compting intea al co elation o e 8 m of leff- and ight-ea ignal he ethe co elation a 1.0 fo the fi t and lat m of the 8 m compa i on and e o d ing the middle 6 m. Hence the diffe ence in inte a al co elation be een the i h and i hot a BIC o ld be la ge fo noi e egment o nge than fo olde ad l, leading to an age-diffe ence in the abilit to deted a BIC.

When the tim li e e p e ented o e lo d peake, the o nd field poided cetain additional c.e., ch a thoe ind ced b comb file ing effed (Na in a al. 1979). The e c e cold aid litene to deted the tan ient beak in inte o nd co elation. The data f om e pe iment 1 gget that both onge and olde ad \mathbf{l} e e ableto e the e c e to det et a hote BIC henthe ec. e e e p e ent (lo d peake p e entation) than the cold hen the e c e e ab ent (headphone p e entation). Mo eo e, e entho gh olde ad l eemedto benefit mo et han o nge ad it fom a it ch fom headphone to the o nd field (Fig. 7, the hold dec ea e in olde ad $\mathbf{l} = 5.1 \text{ m}$; the hold dec ea e in o nge ad $\mathbf{l} =$ 2.2 m), the interaction of age g or p and tim 1 - p e entation t pe fo the d ation the hold a not tatiticall ignificant. Hence, hen the e i no dela bet een the left - and ight -ea o.nd, e cannot eject the h pothe i that o nge and olde ad I benefit e all fom the addition of o nd-field c.e.

T 1 a P1 c Wa 1 I 1 a. (H ad 2 P1 a.)

The p e ent t d al o in e tigated ho long a efo m information i a ailable to the litene b di e al mea ing the ange of inte a al dela in hich a long-d ation (100 m)BIC i a dible nde headphone p e entation (acco ding to the

TABLE 4. T

()							
Participants	ARP	XL	IL	ML	JO	PL	BD	TL
Loudspeaker Headphone	11.1 9.7	9.9 10.2	12.3 7.5	7.8 7.1	12.0 8.2	8.4 6.9	11.3 10.2	12.3 9.3

[‡]In the Bentein et al. (2001) model, the meaning effect that the indo ha on bina alpa amete i inde ed b compting S, the a earned the tempo al indo d ing the prober potion of the tim 1 (e.g., a BIC), and di iding it b the total a earned the tempo al indo d ing the entire tim 1. The internal o effect is all e of an internal parameter then a med to be given b m tipling the eternal all e b S.

e 1 of e pe iment 1, at the e o inte a al dela, the 100 m d ation a ellabo ethe BICth e hold fo allthe o nge and olde paticipant). To of the onge paticipant e e ablet o det ed the occ ence of the 100 m BIC hent he dela bet een the t o ea a p to 25 m in the headphone condition (Fig. 10). Note that dela the hold a e ite a iable fo onge ad l, indicating a ide ange of indi id al diffe ence. Olde ad 1, ho e e, a em chmo e nifo m i h e ped tothei abilit to deted BIC at long dela . Recall, ho e e, that long dela the hold co e pond to bete pe fo mance. Hence age- ela ed pe fo mance dec ement o ld manifet them el e a lo e th e hold. Beca e th e hold a e bo nded a the lo e end b the al e of 0, poo e pe fo mance in a g o p of olde ad l o ld tend to ed ce the a iance in thi g o p, a i ob e ed in Fig e 10. Hence the pate n of e 1 in e pe iment 2 gget that a people age, their capacit to detect a change in co ela ion dimini he.

The e eem to be t o po ible a in hich the a dio tem of ome o ng ad l cold bidge tempo al dela g eate than 15 m bet een co elated left and ight ea o nd. Fit, the co-co elation findion elating the otpt of matched, na o band, left- and ight-ea a dio file cold ha e btantial peak i hin the ange of dela that a e ph iologicall eali able (-1.5 to 1.5 m). If that e e to occ, i o ld pe mit the a dio tem to diting i h bet een co elated and independent noi e, beca e the co-co elation finction fot o independent noi e o ld be e o fo all dela.

To ee ho thi co ld occ. la y(t) be the otpt of a na o -band, left-ea a dio file to a b oad band noi e, g(t). If the file i linea and hift independent, then the otpt of the matching ight-ea file to $g(t - \gamma)$ i impl $y(t - \gamma)$. The efo e, e can compte a co -co elation f nation on the otpt fom the et o file. Fig e 11 ho no mali ed co -co elation f nation, hen the left- and ight-ea noi e a e co elated, fo dela $\gamma = 10$, and 20 m, fo the otpt of t o matched gammatone a dio file t ned to 500 H. The left panel plathe no mali ed co -co elation f nation o e

a ange of dela f om -10 to 30 m. The ight panel plot the ame f ng ion onl o e the ange of dela that might be con ide ed ph iologicall eali able. The pa ame e of thi gammatone file ha e been elected to p o ide the bet fit to the ped alp ofile that cha ade i e a 500 H h man a dio file (Pate on 1976), and ha an e i alent ed ang la band idth of 92 H (454 546 H). Fig e 11 indicate that if the ob e co. ld foc in on matched left - and ight - ea file at this band id h, the potion of the no mali ed c o co elation f nation that i in the ph iologicall pla ible ange co. ld po ibl be edt o di c iminate left - and ight -ea co elated noi e f om independent left and ight-ea noi e hen the intea al dela i 10 m b t not hen it i 20 m. Ho e e, if the filte id h i c t in half (Fig. 12), and the ob e e can foc in on thi filte, then he o he co. ld potentiall pe fom thi di c imination at inte a al dela a long a 20 m.

When tim li a e p e ented o e headphone, i i inte eting to not e that na o band filte ing can accont fo dela the hold <10 m. Not ethat the dela the hold fo all of the olde ad l a e le than 10 m in the headphone condition, he ea the the hold fo i o nge ad l a e g eate than 10 m in the ame condition. Hence, i i po ible that all of the olde ad l, and fo of the o nge ad l e na o band filte ing to accompli h the tak.

Hence, in o de fo the pe fo mance of ome of the o nge ad \mathbf{i} ob e ed he eto be ba ed olel on c o -co elation of the o tp t f om matched a dio file, \mathbf{i} eem that the e file o ld ha e to be na o e than tho e pe io l ob e ed. Ho e e, \mathbf{i} might be po ible to b idge longe inte a al dela if na o band file ing of the inp t at each ea i follo ed b p opagation dela of e e al milli econd (a in D lach' 1972 EC model) befo e bina al compa i on a e comp ted. O \mathbf{i} co ld be the ca e that nonlinea tie of one ot o and he in a dio p oce ing co ld al o help b idge the e longe dela in ome indi id al. And he po ibilit i that highe -o de cent al mechani m co ld be in ol ed in maintaining an a dio t ace of the aco tic a efo m.

The abilit of ome litene to detect inte a all co elated o. nd ha al o been fo. nd p e io. 1 . ing indi ect mea . e,

To obtain a PDF file ho ing ho the no mali ed c o -co elation f nation and a e age po e e e compted fo the otp t of the efile (Fig. 11 13), plea e contad B ce Schneide.

chathoea ociated it hidging idedne of intea all dela ed noi e (Blodget e al. 1956; Che & Ta lo 1954: Mo op & C lling 1998) o detecting ignal in inte a all dela ed noi e (Langfo d & Jeff e 1964). Re l of the e t die hae ggeted that a epeentation of the ea 1 a efomma pe it fo pto 9 to 15 m. Ho e e, to o kno ledge, the p e ent t d i the fit to e a BIC a the ignal p obe to di ed 1 mea e the tempo al e tent of the ep e entation of aco tic a efo m info mation in both o nge and olde paticipant. The e l of the p e ent t d ho that olde paticipant in headphone condition co. ld detect the BIC onl pto inte a al dela of 10 m o le, indicating age-elated decline in the abilit to deted inte a al co elation o e long dela .

Olde litene ha e malle MLD than o nge litene patic la l hen inte a al dela i int od ced. In the t d b Picho a-F lle and Schneide (1992), the th e hold of detecting a 500 H p. etone againt band-limited hite noi e (0.1 5 kH) fo olde paticipant did not diffe ignificant l f om that fo o nge litene henthe e a no inte a al diffe ence fo the effe ence condition (N0). Ho e e, hen MLD e e plotted a a f notion of the inte a al dela of the noi e ma ke, the patte n of e l diffe ed ignificant l bet een o nge and olde litene : The e a no diffe ence bet eenthet o age g o p in the a e age MLD at the minimal inte a al dela (0.25 m), b t the a e age MLD of the o nge g o p e e la ge than tho e of the olde g o p at inte a al dela e al to odd m hiple of the half pe iod of the ignal fe enc. Hence, olde ad le eem to be le able than o nge ad le to bidge inte a al dela in at leatt ot a k: MLD and in the detection of a BIC.

It i al o interestingto note that o nge ad It can detect a BIC at dela that e ceed the main m dela at hich the lagging o nd i f. ed it has the leading o nd (the p ecedence effect). The p ecedence effect ed ce listene 'pe ception of m liple image in e e be ant en i onment b pe cept all g o ping co elated aco tic a efform f om different di ection. Thi pe cept alg o ping i ba ed on capt. e of at ib te

of the eflection b the died a e (Liet al. 2005). Th, onl a f ed image i pe cei ed a o iginating at o nea the location of the o ce, and both locali ation e o and inte fe ence fom the effected are are ediced (Lito k et al. 1999). Beca e dela a e al a p e en t bet een the died and efleded a e coming f om a o nd o ce, the a ailabilit of a ped of the ea lie - a i ing a e o ld be e ential if the efleded a e coming f om diffe ent i e a e to be pe cept all f ed it ht he app op iate o ce. Ho e e, the p e ent e l indicate that o nge ad l a e capable of acce ing a efo m info mation fo d ation that a e longe than the f ion the hold fo the p ecedence effed. Fo e ample, Li e al. (2005), ing imila tim li ha e ho n that fo dela nde 9.5 m, the leading and lagging o nd e e f ed into a ingle o nd ho e o igin a pe cei edto be a o nea the location of the leading o. nd. Fo dela longe than 9.5 m, o nge litene indicated that the head to o nd, one coming f om the location of the leading ond, the α he f om the location of the lagging o. nd. In the p e ent t. d., BIC e e ob e ed fo dela hich e ceed the f ion th e hold, indicating that a efo m info mation can be acce ed fo pe iod that a e ometime m ch longe than the f ion

the hold. The e l of the peent t d alo ho that fo both o nge and olde paticipant, the co elation bet een the longet dela inde the headphone-tim lation condition and lo - and high-fe enc p etone a e ageth e hold e ency ignificant. The the intelitene a iation in pe formance can not be e plained b the intelitene a iation in heating the hold. Mo eo e, the t d b Ake o d and S mme field (1999) ha ho n that hen the cente fe enc of bandlimited (100 H) noi e a 2000 H, the mean BIC (bina al gap) detection the hold a lage than 100 m. In othe o d, hen the d ation of a BIC i 100 m, fe enc

component highe than 2000 H ma not b tantiall cont ib te to the detection of the BIC bet een t o co elated b oadband noi e. Th , diffe ence bet een the t o age g o p cannot be e plained b the diffe ence in heating th e hold at high f e encie (\geq 3000 H).

284

REFERENCES