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targets presented at the same retinal location to the untrained

eye, which is in line with the eye specificity property of this

kind of behavioral learning [5].

Is this LGN response enhancement a long-lasting change, and

does it serve as a long-term mechanism of contrast detection

learning? One recent study [35] measured the dynamics of sub-

jects’ behavioral performance with a texture detection task [5]

and their V1 activation over a long time course of perceptual

learning. Within the first few weeks of training, V1 activation in

a subregion corresponding to the trained location and task per-

formance both increased. However, while the improved perfor-

mance was maintained 2 weeks after training, the V1 activation

decreased to the level observed before training. Similar transient

response enhancements were also found in the fusiform face

areas immediately after training on a face discrimination task

[11]. Both of the studies challenged the role of the transient

response enhancements immediately after training in perceptual

learning. In the present study, we did not measure brain signals

after the post-training test to examine the persistence of the

response enhancement to the low contrast. Nevertheless, the

significant correlation between the behavioral and neural en-

hancements provides deterministic evidence for the crucial

role of the M layers in the contrast detection learning, at least

in the learning effect immediately after training.

Unlike previous studies [28–30], we did not observe training-

induced response increase at the cortical level (i.e., V1). Here

are several possible reasons. First, the fMRI measurement is

not sensitive enough to detect such small changes (if there are

any) that might be also specific to the trained eye andMneurons.

In V1–V3, BOLD signals from individual voxels reflect mixed neu-

ral signals from left and right eye neurons and from M and P

neurons, which could not be separated due to the limit of the cur-

rent fMRI spatial resolution. Second, subjects were trained for



the glutamate receptor agonist to block visual responses in on-
center retinal ganglion cells and found that the inactivation led
to a rapid emergence of off-center responses from on-center
neurons in the LGN. A signiÞcant stride we made in the present
study is that, without such abnormal visual experience (i.e.,
eyelid closure or pharmacological inactivation), even regular
practice could profoundly change local receptive Þeld properties
of the LGN neurons in human adults. Recently, it has been recog-
nized that the LGN and other thalamic structures actively regu-
late information transmission to the cortex and between cortical
areas using various mechanisms, thereby contributing to
perception and cognition much more than we previously
believed [14, 41]. Exploring the functional plasticity of the
subcortical structures induced by training is an important
research topic in the future, which is necessary for us to fully un-
derstand the adaptive nature of perceptual and cognitive infor-
mation processing in the brain.

EXPERIMENTAL PROCEDURES

The procedures and protocols used in this study were approved by the human
subject review committee of Peking University. Complete procedures can be
found in the Supplemental Information.
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