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A key issue in the field of noninvasive brain stimulation (NIBS) is the accurate localization of scalp positions that correspond
to targeted cortical areas. The current gold standard is to combine structural and functional brain imaging with a commercially
available “neuronavigation” system. However, neuronavigation systems are not commonplace outside of specialized research
environments. Here we describe a technique that allows for the use of participant-specific functional and structural MRI data
to guide NIBS without a neuronavigation system. Surface mesh representations of the head were generated using Brain Voyager
and vectors linking key anatomical landmarks were drawn on the mesh. Our technique was then used to calculate the precise
distances on the scalp corresponding to these vectors. These calculations were verified using actual measurements of the head and
the technique was used to identify a scalp position corresponding to a brain area localized using functional MRI.

1. Introduction

Noninvasive brain stimulation (NIBS) techniques such as
repetitive transcranial magnetic stimulation (rTMS) and
transcranial direct current stimulation (tDCS) allow for the
temporary modulation of neural activity within the human
brain. rTMS involves the induction of weak electrical currents
within targeted regions of the cortex via brief, time-varying
magnetic fields produced with a hand-held coil [1]. tDCS
employs head-mounted electrodes, which allow for a weak
direct current to interact with the underlying cortex [2]. NIBS
can be used to investigate the role of individual brain areas
in specific cognitive, behavioral, or perceptual processes [1].
In addition, these techniques are being investigated from a
clinical perspective and current evidence suggests that NIBS
may be applicable to the treatment of multiple neurological
and psychiatric disorders [3, 4].

Studies involving the use of NIBS begin by selecting a
target brain area for stimulation. This process is typically
informed by evidence from brain imaging, animal neuro-
physiology, or studies involving neurological patients. Subse-
quent steps include the selection of appropriate stimulation
parameters and ensuring that the stimulation is delivered
to the correct brain area. This latter point is particularly
important as the stimulation effects are most pronounced in
close proximity to the rTMS coil and tDCS electrodes [5].
Therefore, accurate, participant-specific localization of stim-
ulation sites on the scalp is required for optimal stimulation
[6].

A number of approaches can be used to identify the
correct scalp position for stimulation. Single pulse TMS can
be used to activate specific regions of the primary motor
cortex resulting in motor evoked potentials (MEPs) within
the corresponding peripheral muscle [7]. The scalp location
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that evokes the strongest MEP can then be used as the
location for rTMS or tDCS. A comparable technique also
exists for the visual cortex whereby single pulse TMS of
the occipital pole can be used to evoke the percept of a
phosphene [8]. The scalp location that induces the most
robust phosphene or a phosphene in a specific visual field
location can be used for visual cortex stimulation. A similar
technique can be used for motion sensitive, extra-striate
visual area V5 whereby TMS can be used to induce moving
phosphenes [9]. It has been shown that this technique is
in good agreement with localization of V5 using functional
magnetic resonance imaging [10]. However, it is not possible
to use this approach outside of the motor and visual cortices
because most brain regions do not produce acute neurophysi-
ological or perceptual effects in response to single pulse TMS.

An alternative technique for identifying participant-
specific stimulation sites on the scalp is the 10–20-electrode
system, which was originally designed for positioning EEG
electrodes [11]. This approach defines a grid of positions on
the scalp that are separated by 10% or 20% of the distance
between anatomical landmarks such as the nasion and the
inion. This approach has been used successfully in a large
number of brain stimulation studies; however, the mapping of
particular 10–20 system locations to specific brain areas can
vary across participants [12].

Another alternative is to use structural and functional
brain imaging techniques to localize specific brain areas
in individuals with millimetre resolution. A number of
frameless stereotactic navigation systems exist for real-time
coregistration of a participant to their own MRI images. Tools
such as a “pointer” or a TMS coil can also be registered
within the volume. These systems typically involve ultra-
sound devices or infrared cameras and a number of reference
targets mounted on the head and NIBS apparatus. When used
in combination with structural and functional MRI images
these “neuronavigation” systems allow for precise identifica-
tion of the scalp position corresponding to a particular brain
area [13].

The combination of brain imaging and a neuronavigation
system is the current gold standard in the field of NIBS
[14] and may improve the results of NIBS-based therapeutic
interventions [15–20]; however, there are some disadvan-
tages. These include difficulty in using these systems for
studies of posterior brain areas that can fall outside of the
neuronavigation system’s field of view and, most importantly,
the high cost of these systems, which can exceed $50,000.
Techniques have been described that allow NIBS to be
targeted using generic MRI datasets [21] or when structural
but not functional MRI data are available for individual
participants [22]. Furthermore, techniques for identifying
optimal scalp locations for stimulation based on individual
participant’s neuroanatomy are also available [23]. However,
each of these approaches requires the use of a neuronaviga-
tion system. Here we describe a technique that allows the use
of individual structural and functional MRI to guide NIBS
in the absence of a neuronavigation system. The approach
is based on vectors drawn on a mesh that is morphed to
participant-specific MRI data. These mesh vectors are then
transposed to the participant’s head by converting them to

head measurements anchored to anatomical landmarks. We
report comparisons between measurements made using our
technique and actual head measurements. We also give an
example of how the technique can be used in combination
with fMRI to localize a stimulation site for visual area V5 in a
single subject. Visual area V5 was chosen for this example as
it can be readily localized using fMRI and the correspond-
ing scalp position cannot be identified based on a single
anatomical landmark. Therefore, a number of measurements
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Figure 1: A 3D mesh morphed to the structural MRI data of a representative participant. Panels (a)–(d) show the anatomical landmarks that
were used as anchor points for scalp distance calculations marked on a T1-volume surface mesh created using Brain Voyager. N: nasion, RT
and LT: right and left tragi, respectively, and IN: inion. The lines connecting the anatomical landmarks are “patches of interest” (POIs) drawn
in Brain Voyager that link adjacent triangles in the mesh. Panels (e) and (f ) show close-up views of the mesh without the surface coloring.
The mesh has been cut axially at the level of the inion. The smooth surface of the head is represented using triangular elements and each of
these elements is defined by its tricorners.

subroutines within Brain Voyager. A general linear analysis
was conducted and the results were visualized as t-maps
on the anatomical image. Area V5 was identified as a
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Figure 5: Localization of a scalp position above V5 in the left
hemisphere. The axial cut through the Brain Voyager mesh was
positioned to reveal the most active voxel in left V5. The lines drawn
on the mesh show the POIs that were used to identify the scalp
location corresponding to left V5. Blue: nasion to transverse plane,
white: tragus to transverse plane, red: intersection of nasion vector
and transverse plane to intersection of tragus vector and transverse
plane, and green: extension of the vector to the scalp position above
area V5. Orange regions indicate areas of functional activation in
response to the V5 localization scans. See the main text for a detailed
description of this procedure.

not supported. This issue is also relevant to the use of neuron-
avigation systems. Selection of the optimal stimulation site is
a complex process as the electrical current generated by NIBS
techniques interacts with the head and brain anatomy in ways
that are unique to each participant [33–35]. A number of
techniques for identifying optimal NIBS sites based on MRI
data have been developed. These could be combined with
our approach for transposing stimulation sites to the head to
further improve the targeting of NIBS when neuronavigation
systems are not available.
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