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In early retinotopic areas of the human visual system,
information from the left and right visual hemifields
(VHFs) is processed contralaterally in two hemispheres.
Despite this segregation, we have the perceptual
experience of a unified, coherent, and uninterrupted
single visual field. How exactly the visual system
integrates information from the two VHFs and achieves
this perceptual experience still remains largely unknown.
In this study using fMRI, we explored candidate areas
that are involved in interhemispheric integration and the
perceptual experience of a unified, global motion across
VHFs. Stimuli were two-dimensional, computer-
generated objects with parts in both VHFs. The retinal
image in the left VHF always remained stationary, but in
the experimental condition, it appeared to have local

motion because of the perceived global motion of the
object. This perceptual effect could be weakened by
directing the attention away from the global motion
through a demanding fixation task. Results show that
lateral occipital areas, including the medial temporal
complex, play an important role in the process of
perceptual experience of a unified global motion across
VHFs. In early areas, including the lateral geniculate
nucleus and V1, we observed correlates of this
perceptual experience only when attention is not
directed away from the object. These findings reveal
effects of attention on interhemispheric integration in
motion perception and imply that both the bilateral
activity of higher-tier visual areas and feedback
mechanisms leading to bilateral activity of early areas
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play roles in the perceptual experience of a unified visual
field.

Introduction

Early visual areas in the primate brain receive direct
input largely from the contralateral visual field, which
implies a discontinuity at the midline (Gazzaniga, 2000;
Tootell, Switkes, Silverman, & Hamilton, 1988). Yet we
have the perceptual experience of a unified world
without any disruption in the midline. How this
experience emerges still remains an open question. One
possibility is that we consciously perceive a unified
visual field as a result of activity in higher visual areas
that respond bilaterally. Presumably, neurons in these
areas have larger receptive fields that extend into the
ipsilateral visual hemifield (VHF) (A. T. Smith,
Williams, & Singh, 2004; Tootell, Mendola, Hadji-
khani, Liu, & Dale, 1998; but see Lavidor & Walsh,
2004). However, it is not clear whether this kind of
bilateral response is necessary and sufficient for
perceptual experience of a unified visual field. Indeed
results of studies with patients having lesion in V1 and
those with healthy humans using backward masking
paradigms and transcranial magnetic stimulation sug-
gest that activity of early areas is critical for a conscious
visual experience (Lamme & Roelfsema, 2000; Zeki &
Ffytche, 1998). Therefore, it could be argued that early
areas should be involved in the process for the
perceptual experience of a unified visual field, either
through feedback provided by the higher-tier areas
with larger receptive fields in the same hemisphere or
alternatively by callosal interactions (Clarke & Mi-
klossy, 1990).

Despite its obvious fundamental importance, little is
known about the mechanisms underlying the percep-
tual experience of a unified visual field. Liu, Zhang,
Chen, and He (2009), using fMRI and EEG combined,
recorded responses while observers viewed flickering
checkerboard patterns. They found evidence support-
ing that bilateral integration took place in the primary
visual area (V1) as well as areas in the lateral occipito-
temporal (LOT) regions, which includes MTþ. Inter-
estingly, the bilateral MTþ activity preceded the
bilateral V1 activity. This suggests that interhemi-
spheric integration first occurs in MTþ and other LOT
areas, and then feedback is provided to earlier areas,
such as V1. Vanni et al. (2004) studied bilateral
responses in visual cortex using EEG and fMRI
combined as well. Their results indicated that LOT
areas, possibly including MTþ, were among the first
extrastriate areas to respond bilaterally. Both studies
argue that these areas must be critical for unified
perception across the midline. However, the stimuli

used were simple wedges and squares texture-mapped
with flickering black and white checkers. When placed
in both VHFs, the shapes were disjointed. Therefore, it
is not obvious how to generalize the results of Liu et al.
and Vanni et al. to explain the perceptual experience of
a unified visual field.

Ban et al. (2006) conducted an fMRI experiment to
address the critical question of the role of early areas in
perceptual experience of a unified visual field. They
measured the activity in early visual areas, V1, dorsal
V2, and dorsal V3, to an arc placed in the lower left
quadrant of the visual field. They found that the
activity in the retinotopically defined regions was larger
when the arc was part of a complete annulus than that
of a single arc or multiple arcs that did not form a
whole annulus even though in all conditions the
stimulus was identical within the retinotopically defined
region. Their results showed that activity in early
retinotopic areas, V1, V2d, and V3d, depended not
only on what is present in the contralateral visual field,
but also on what is being presented on the ipsilateral
visual field. Ban et al. argues that this result suggests
that activity of early visual areas plays a role in
perceptual experience of a unified visual field and is
influenced by global perception, contextual cues, and
perceptual grouping. However, the stimuli used in the
Ban et al. study emphasized only shape perception, and
visual areas other than V1, V2d, and V3d were not
investigated.

Another important but little explored factor in the
perceptual experience of a unified visual field is
attention. Attention has been shown to strongly affect
neuronal activity measured with fMRI in visual areas
(Gandhi, Heeger, & Boynton, 1999), including motion-
sensitive areas such as MTþ (Burr, Baldassi, Morrone,
& Verghese, 2009; Crespi et al., 2011; Saenz, Buracas,
& Boynton, 2002; also see Hansen, Kay, & Gallant,
2007; Womelsdorf, Anton-Erxleben, Pieper, & Treue,
2006). Feedback signals can also be modulated with
attention, and feedback to early areas is believed to be a
key factor in perceptual awareness (Lamme & Roelf-
sema, 2000). Therefore, understanding how attention
modulates the neuronal correlates of perceptual expe-
rience of a unified visual field could be instrumental to
understanding the details of the underlying information
processing mechanisms, e.g., the roles of feedforward
and feedback processes.

To explore the correlates of neuronal activity in
visual areas that potentially perform interhemispheric
integration and play a critical role in the perceptual
experience of global object motion unified across VHFs
and how attention affects the activity, we conducted an
fMRI experiment. In the first condition, we measured
the cortical responses to an oscillating ‘‘Pac-man’’ while
participants were fixating at the center of the figure
(Figure 1, left panel). The oscillations of the Pac-man
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were such that the physical localized motion was
restricted to the right visual field. Nevertheless, the
whole Pac-man appeared as oscillating. In the second
condition, we measured responses to a control stimulus,
in which the localized motion signals were approxi-
mately identical in the right visual field, but unlike in the
Pac-man condition, the left portion of the control figure
appeared static (Figure 1, right panel). Because the
stimulus is unified in the Pac-man but not in the control
condition, we hypothesized that areas that integrate
information across hemispheres and play a critical role
in perceptual experience of global motion unified across
two VHFs should be differentially more active in the
Pac-man condition compared to the control condition.
We repeated the measurements under two attentional
conditions. In the ‘‘fixation task’’ condition, partici-
pants were required to perform a demanding fixation
task to direct attention away from the figure (see
Methods section for details). In the ‘‘passive view’’
condition, the participants simply fixated the dynamic
fixation mark without performing the fixation task. This
resulted in four conditions overall (two stimulus
conditions · two attention conditions).

Methods

Participants

Bilkent University undergraduate students, including
the authors DTK, SE, and CO, participated in the
experiments. Informed written consents were obtained
before the experiments in accordance with the proce-

dures and protocols approved by the Human Ethics
Committee of Bilkent University. Participants were
compensated for their participation with payment. All
participants had normal or corrected-to-normal vision
and had no known visual or neurological disorders.
Eight participants participated in the ‘‘fixation task’’
condition, and seven participated in the ‘‘passive view’’
condition, including the authors DTK, SE, and CO. A
different group of 20 naive observers participated in the
behavioral experiments, and six observers participated
in the eye-tracking experiments, including the authors
HB and KD.

MR data acquisition

Magnetic resonance imaging was performed on a 3
Tesla scanner (Magnetom Trio, Siemens AG, Erlangen
Germany) with a 12-channel phase-array head coil. A
high-resolution T1-weighted three-dimensional anatom-
ical-volume scan was acquired for each participant in the
same session before the functional scans (single-shot
turbo flash; voxel size¼ 1 · 1 · 1 mm3; repetition time
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eral stimulation, and MT separately (Huk et al., 2002;
Morrone et al., 2000).However, this was limited to only a
few subjects. Therefore, we present data averaged over
the entire MTþ.

Retinotopic mapping stimuli

All participants took part in a separate retinotopic
mapping session. Results of this session were used to
delineate borders between early visual areas. The
stimuli were composed of rotating wedges and ex-
panding and contracting rings with counter-phase
flickering black-and-white checks. The wedges had an
arc angle of 308 and rotated by 308 about the center of
the screen every 10 s, sweeping the whole 3608 in 12
steps. This cycle was repeated five times. There were six
rings with a thickness of about 28 and an inner diameter
ranging from 18 to 148. Each ring was presented for 10
s. This cycle was repeated 10 times. For localizing the
areas in the dorsal stream, namely V3A/B, LO-1, and
LO-2 borders, we followed the convention used in
Larsson and Heeger (2006) (see also Tootell et al.,
1997). The structural images acquired during the
retinotopic mapping session were used to obtain a 3-D
inflated model of the cortex for each participant.
Boundaries between retinotopic areas were drawn
manually on the inflated cortices by inspecting the
cross-correlation maps of the MR signal and the
rotating wedges and expanding rings (Engel, Glover, &
Wandell, 1997; Sereno et al., 1995).

MR data processing and analysis

Functional images were preprocessed using Brain-
Voyager QX analysis software (Brain Innovation,
Maastricht, The Netherlands). Preprocessing steps
included slice scan time correction, 3-D head motion
correction, linear trend removal, and temporal high-
pass filtering (cutoff frequency 0.015 Hz) (A. M. Smith
et al., 1999). No spatial smoothing was applied to the
fMRI data. All subsequent functional images were
spatially transformed, up-sampled, and aligned with
the anatomical images obtained in the retinotopic
mapping session. Functional images from ROI local-
izer scans were analyzed using the general linear model
with Brain Voyager QX. Voxels that were significantly
more active during corresponding dynamic blocks (p ,
10�4, corrected for multiple comparisons with false
discovery rate method) were identified on the inflated
cortex for each observer. Functional signals in exper-
imental scans were extracted from these voxels,
separate for each visual area, and further analyzed by
our own numerical routines written in the Java
programming platform. This step included converting
the functional signals with arbitrary units to percentage
change with the average of the entire scan serving as the
baseline and event-related averaging for each stimulus
condition. At each time point, the event-related average
of the static condition is subtracted from that of the
dynamic condition (Figure 5), and the average per-
centage signal change for the last three time points in
each condition (from eighth to 12th second after the
onset of the stimulus) was computed. After that, the

Figure 3. ROIs were identified using wedges texture-mapped with counter-phase contrast reversing checkerboard patterns in early

visual areas (the Pac-man figure in the background is shown here for visualization purposes; it was not present in the actual

experiment). For MTþ, moving random dots were used as a localizer. Boundaries between early visual areas were drawn using the

results of a separate retinotopic mapping session for each participant. The image on the right shows ROIs and visual area boundaries

on an inflated brain of one participant.
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difference in percentage signal change between the Pac-
man and control conditions were computed (Figure 6).
Finally, statistical significance of the difference was
tested with repeated measures t test (i.e., whether the
signal change in the Pac-man condition was larger than
that in the control condition).

Behavioral experiment

We assessed the perceptual effect of the illusory
motion stimulus (Pac-man) through a simple behavioral
experiment. Stimuli were those used in the fMRI and eye-
tracking experiments (described below). Observers par-
ticipated in four short experiments in which they viewed a
given stimulus for 12 s. For this experiment only,
dynamic stimuli were used. After each presentation, the



in a screen–eye distance of 64 cm. The observer’s head
was stabilized using a custom-made chin rest. The
experimental room was dimly lit to optimize pupil and
corneal reflection detection by the eye tracker. Eye
movements were recorded for the length of one run (250
s, see above) for each experimental condition, resulting
in four experimental sessions. The order of sessions was
randomized for each observer and usually completed on
different days. Six observers participated in the exper-
iment, two of which are authors. We analyzed the
horizontal and vertical positions of eye fixations as a
function of three factors (Pac-man–control, static–
dynamic, fixation task–passive view), combined
(MANOVA) and separate (ANOVAs).

Results

What would we expect if the neuronal activity in a
cortical area were related solely to the physical
characteristics of the image on the retina? In both Pac-
man and control conditions, the part of the stimulus in
the left VHF is static, and the motion energy in the
right VHF is approximately the same. Thus, if receptive
field (RF) sizes of neurons were small and restricted to
the contralateral VHF in an area in the right
hemisphere, we would expect to observe little or no
response. Or, if the neurons have larger RFs that
expand into the ipsilateral VHF, we would expect a
nonzero response to both stimulus conditions. Criti-
cally, under both of these possibilities, we would expect
the responses to be approximately the same across the
two conditions. We call this the null hypothesis.
Alternatively, if the neuronal activity were related to
perceived motion of the object unified across the two
VHFs, then we would expect to find a larger activity in
visual areas in the right hemisphere in the dynamic Pac-
man condition than in control condition. In both
hypotheses, we expect a significant and approximately
equal activity in the left hemisphere for both conditions
because there is retinal motion in the right VHF with
approximately equal local energy. Figure 4 summarizes
these expected outcomes.

Figure 5 shows the time course of event-related
averaged responses to dynamic Pac-man and control
stimuli in the right and left hemisphere visual areas,
averaged across all observers and all runs. The top
two rows show the results from the right hemisphere;
the bottom two rows show the results from the left
hemisphere. The top row and the third row show
results of the fixation-task condition, in which
participants were performing a demanding fixation
task to control for the effects of attention (fixation
task results: 85% success for Pac-man, 76% for
control [difference was significant at a ¼ 0.05 level],

RTs ¼ 653 and 665 ms, respectively [difference was
not significant at a ¼ 0.05 level]). The second and last
rows show the results from the passive-view condition.
Note that the negative MR signals measured in early
visual areas in the right hemisphere are consistent
with literature showing reduced blood-oxygen-level
dependent activity in the ipsilateral hemisphere to
visual stimulation (A. T. Smith et al., 2004; Tootell et
al., 1998).

In order to quantitatively assess the effect, we
computed the average responses in the last three time
points (from the eighth to the 12th second after the
onset of the dynamic stimulus) of the Pac-man and
control stimuli and computed their difference. In other
words, for each ROI, we tested whether the fMRI
signal in the Pac-man condition was larger than that in
the control condition. Results are presented in Figure 6.
First, we notice that both in the fixation-task and the
passive-view conditions, activity in the right hemi-
sphere in the dorsal visual areas, V3A/B, LO-1, and
MTþ, is larger in the Pac-man condition. In the ventral
pathway, however, in the fixation-task condition, there
is no difference between the two stimulus conditions.
The effect is more prominent in the passive-view
condition, extending to ventral areas and to LGN.
These results support the alternative hypothesis de-
scribed above in the dorsal pathway in both attention
conditions and in the ventral pathway when the
attention is not directed away from the stimulus. In the
left hemisphere, the responses to Pac-man and control
stimuli are usually very similar (Figure 5), but in V1,
responses in the control condition are statistically
significantly larger than those in the Pac-man condition
whereas in LO-1 and V3A/B the opposite is observed
(at a¼ 0.05 significance level). This indicates that even
though the local physical motion signals were nearly
the same, either small low-level differences or the
perceived differences between the two stimulus condi-
tions might have affected the activity in the left
hemispheres, too.

Behavioral experiment

To establish the perceptual effect, we conducted a
behavioral experiment in which we showed observers 12-
s clips of oscillating Pac-man or control stimuli and
asked (a) did any part of the stimulus not move? and (b)
if yes, please indicate on which side you perceived no
motion (left/right). Under the Pac-man passive-view
condition, four out of five participants responded ‘‘no’’
(i.e., ‘‘No, there was no part that was not moving’’); one
participant responded ‘‘undecided.’’ Under the Pac-man
fixation-task condition, two out of five participants
responded ‘‘no,’’ one ‘‘undecided,’’ and two ‘‘yes.’’ All
participants who said ‘‘yes’’ indicated that the left part
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Discussion

We found that when attention is directed away from
the object, the right hemisphere dorsolateral occipital
areas V3A/B, LO-1, and MTþwere differentially more
active during the dynamic presentation of the Pac-man
stimulus than during presentation of the control
stimulus even though we expected no difference
between them in the null hypothesis. When attention
was not directed away from the object, all areas
investigated in the right hemisphere, including LGN,
were differentially more active to the oscillating Pac-
man stimulus. In other words, we found that the
neuronal activity correlated with perceived motion, not
only retinal motion. These findings imply a strong
interhemispheric integration, leading to perceptual
experience of a unified global motion across VHFs in
all areas investigated with the strongest effects observed
in the dorsolateral occipital areas. The order of the
effect is largely consistent with what has been reported
in literature in response to actual motion (Tootell et al.,
1997). Moreover, the results show that the effect is
strongly attention-dependent in early visual areas.
Lateral occipital areas, including MTþ, on the other
hand, are less affected by attention.

Lateral occipital areas are known to respond to
ipsilateral stimulation (A. T. Smith et al., 2004; Tootell
et al., 1998) and have been implicated to account for
unified visual field perception in previous studies. Liu et
al. (2009) found evidence that bilateral integration took
place in both V1 and LOT regions, particularly in
MTþ, but the bilateral LOT activity preceded the
bilateral V1 activity (see also Vanni et al., 2004). These
results are consistent with our findings here; however,
because of the coarser temporal sampling in fMRI, we
do not have information about the timing of activity in
different areas. MTþ is densely myelinated with thicker
axons (Born & Bradley, 2005; Clarke & Miklossy,
1990) and has a very fast response rate to retinal input
that is comparable to that in V1 (Born & Bradley, 2005;
Lamme & Roelfsema, 2000). The fast connection from
retina to MTþ could either be through the fast M
pathway or direct inputs through superior culliculus,
pulvinar, and LGN (Lamme & Roelfsema, 2000;
Sincich, Park, Wohlgemuth, & Horton, 2004). Given
the large receptive fields of its neurons and its suggested
role in whole object motion perception and estimation
of pattern motion by integrating V1 inputs (Born &
Bradley, 2005), MTþ could be one of the first areas in
which bilateral information is pooled (Vanni et al.,
2004) and feedback is provided to earlier areas,
including V1.

Surprisingly, we found that the activity of LGN is
correlated with both perceived and retinal motion
when attention is toward the object. The nature of this
activity is not readily clear. There is a direct ascending

LGN–MTþ connection through the K pathway (Born
& Bradley, 2005; Sincich et al., 2004), but this
connection is not known to be symmetric. In an
alternative route, extrastriate projecting LGN neurons
receive input from the superior colliculus (SC), and
the SC receives descending input from MT (Britten,
2004). Meanwhile, the pulvinar, a subcortical struc-
ture that is implicated with pattern motion processing,
receives ascending input from the SC and has a
symmetrical connection with MT (Britten, 2004;
Casanova, 2004). It is possible that MTþ provides
feedback to the SC and pulvinar, and as a result, the
activity in LGN increases. The rise in the activity of
these subcortical areas could partly be the cause of
increased activity in V1, V2, and V3 in addition to
direct feedback from MT to those cortical areas.

Callosal communications seem to be critical for an
integrated visual perception as revealed by split-brain
patient studies (Gazzaniga, 2000; Naikar & Corballis,
1996). In healthy humans, Genç, Bergmann, Singer,
and Kohler (2011), using fMRI and DTI, have shown
that the direction of perceived motion in a motion
quartet stimulus depended strongly on callosal con-
nections between the two MTs but not between the
two V1s. This highlights the importance of MT for
global motion perception in line with our results.
Studies on callosal connections suggest rich connec-
tions at MT (Clarke & Miklossy, 1990; Genç et al.,
2011) and at the V3–V3A/B border (Clarke &
Miklossy, 1990) whereas V1, V2, and V3 have no
callosal connections except regions retinotopically
corresponding to vertical meridian (Clarke & Mi-
klossy, 1990). This seems computationally efficient
because the most important information for unifying
the two VHFs lies along the vertical meridians. MT
also has direct reciprocal connections with V1, and
receives input from V2 and V3 (Born & Bradley, 2005;
Britten, 2004). However, given the pattern of activity
we found in ipsilateral V1, V2, and V3, the differen-
tially increased activity in MT cannot be explained by
these connections. Thus, the bilateral MTþ activity
must be caused either by callosal interactions or direct
subcortical input.

Even though motion is a salient stimulus and often
perceived without attention, activity of MTþ is still
affected by attention (Born & Bradley, 2005; Crespi et
al., 2011; Culham, He, Dukelow, & Verstraten, 2001;
O’Craven, Rosen, Kwong, Treisman, & Savoy, 1997;
Saenz et al., 2002). Moreover, attention can more
strongly modulate motion-related activity in early
visual areas (Gandhi et al., 1999) as well as in LGN
(O’Connor, Fukui, Pinsk, & Kastner, 2002). We found
increased activity in ipsilateral early visual areas only
when attention was not directed away from the stimuli,
and participants reported being aware of perceiving
global motion of a unified object only under this
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attentional condition. Therefore, one can argue that the
activity of early visual areas is critical for perceptual
experience of global motion of an object unified across
VHFs and that the activity of dorsolateral areas alone
may not be enough for this perceptual experience. This
argument is consistent with the results of previous
studies in literature (Lamme & Roelfsema, 2000; Zeki
& Ffytche, 1998).

Psychophysical studies suggest that RF sizes of MT
neurons can be as large as 708 under some conditions
(Burr, 2013; Burr, Morrone, & Vaina, 1998; Morrone,
Burr, & Vaina, 1995). Moreoever, the MT RF
characteristics are very flexible, particularly RF size
and position, and visual field representations are
strongly affected by spatial attention (Burr et al., 2009;
Crespi et al., 2011; Womelsdorf et al., 2006; also see
Hansen et al., 2007). Moreover, object-based attention
(O’Craven, Downing, & Kanwisher, 1999; Roelfsema,
Lamme, & Spekreijse, 1998), distributed focus of
spatial attention to multiple regions (McMains &
Somers, 2004, 2005) or feature-based attention (Saenz
et al., 2002; Treue & Trujillo, 1999) could all be
important mechanisms for combining the visual stimuli
across VHFs in MT.

Our results are not in complete agreement with the
results of Ban et al. (2006), who found correlates of
interhemispheric integration in context-dependent
shape perception in early visual areas, including the
primary visual cortex, as well as in V2d and V3d when
attention was directed away from the object. This
indicates that the cortical mechanisms underlying
interhemispheric integration in shape perception may
be different than those for motion perception.

Results of behavioral experiments show that, under
the passive-view condition, the left side of Pac-man but
not of the control stimulus is perceived as moving. In
parallel to this finding, there are differences in fMRI
signal in all visual areas. On the other hand, under the
fixation-task condition, the left side of Pac-man is not
always perceived as moving, and the fMRI signal
difference between Pac-man and control is reduced in
nearly all cortical areas investigated.

We found no difference in eye-movement patterns
across the static and dynamic conditions of the control
and Pac-man stimuli, only attention has modulated the
eye fixations, bringing them closer to the center of the
stimulus when observers performed a demanding
fixation task. However, it is still possible that, even
though the eye movements are similar, they might have
affected the signal differently across conditions. This
could have affected results, especially in areas with very
small RF sizes, such as V1/2, leading to the differences
between our study and the Ban et al. (2006) study. Note
that there was a small but statistically significant
difference between the success rates of the fixation task
under Pac-man and control conditions (85% for pac-

man, 76% for control) but not for reaction times. This
suggests that the fixation task could be slightly easier
for the Pac-man condition and have influenced the
outcomes under the fixation-task condition (this could
affect only the conclusions in areas in which the Pac-
man signal was measured larger than control, i.e., in
LOT areas V3A/B, MTþ, and LO1). However, given
that there were no differences in eye movements and
little effect of spatial attention on the results in LOT
areas, it is unlikely that this difference played any
major role in the results.

Conclusions

Taken together, our results imply that bilateral
activity of both dorsolateral occipital areas and early
areas play a role in interhemispheric integration and
perceptual experience of a unified visual field. Our
results are consistent with a model in which first
lateral occipital areas V3A/B, LO-1, and MTþ
respond bilaterally (through callosal connections or
through subcortical input), and their feedback signals
lead to increased bilateral neuronal responses in early
areas.

Keywords: global motion perception, interhemispheric
integration, fMRI, visual brain, perceptual experience of
unified visual field
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