Asian Journal of Social Ps cholog (2017), 20, 63 74

# Same meaning but different feelings: Different expressions influence satisfaction in social comparisons

Yi Song,<sup>1,2</sup> Xiaofei Xie<sup>1,2</sup> (b) and Hui Zhang<sup>1,2</sup> S , P 🎙 U 1Sh PhaayCh ,ay²B ♦K Lab a B ha a 🚽 , B 🍬, Cha MaHah, P 🎙 U a, <sup>M</sup> "ar м. ₩\_\_\_\_b (... la, h ttr. ta, **a**\_1 fr t 5ffr 1 2, r. **"**,). r 11 ff r 1 5 "ar ja, 5. 1, 5 12, 1 1 а, **a**\_1 r r '  $\begin{array}{c} 5a_{2}1' & a_{2} + p_{2} + \dots & (\dots & b \\ m & & m, & m \\ r & & m \\ r & & m \\ \end{array}$ 5..... '). 5 a, a,ff 1a, a, 11 , \_\_\_, ar 5 ttr r r "ar **b**, 5 5a,1 f 5 12 1 r 11 a, L , **t** r. ",ar <sup>₩</sup>, I 5 л b ttr 12 b ttr 12 Ja, a<sub>r</sub> 1 **A**r . 1 r a, ĴŰ. ш , 5 pa. 14.1. f .fr 🖏 L 1a, 1 1 л ,a, 1,5a, 1 59 Ir r.

Ke words: direction of comparison, framing effect, social comparison.

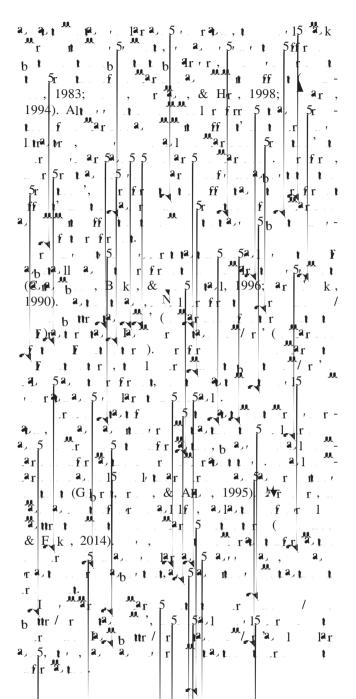
ліл **a**,1 1 a, 11 t . At 1. 1 r 1 t r r Lt 1 a.a. 5 At rk, 1 *n* 1 rfr 🕷 5 a ar 11a 1 r b 붷 5 12 1 , а, 11. f. . . 1. 1 b "ar a,1 & t ( 1 Fk , 2014). It a, ra 1b r r 1 (B<sub>1</sub> | . k, D<sub>−</sub> k ⊮<sub>1</sub>, B<sub>−</sub> , D. k 📭 , & Br 15 , 2012). ". "a<sub>r</sub> -5ff r . **1** a, a,1 а, 1 t fr 🖏 Fr a, ' 1, b ur Ta *m*/r, r It a, ja, / r b ĴΜ. Ma<sub>r</sub>a, 1 a, 1 12,11 5 trin<sub>a, i</sub> `, a. It a, 🐴 11 t r ۲. .... 5ff r ar r r 1 1 а. 5a.)II 'f 1-٦, 1 a, 11 a f tr a, 1 1 1. k 1 "ar a, 11 r 12 1 . lr 1 "a fr 🖏 -I a, 55 L a,1 |r L ", , I' 1. fr 1 f ( t r " 15 b ar ft. ۲. 1 h. 1 1 r a. 1. 1 , 1t ar r t r ..... ţ.f fr 1 1 r (\_. . · '). Fr ,a, ą, 1 ÷. 11a,,, t r r r h м, , 15 a, t r , ar b ttr / ja. a, r b ttr / r r'r ja, , D.ar 1. 1. 1 Correspondence: 2 f 1,

 $5 10 \frac{3}{20} 2016;r = 24 F_{\rm H} a^2 r - 2017;a, 15$ 

11.0 **a**,1 lr t r ' b' 1 5ff r fr 1 5a,1'a, 1 a, 1 а. 1 12,1 \$ff r . 1 5a.1 f fr 🖏 л La,L , a, 51 l.r a,ff 1 a,1 f, 1 11 Fritr-JI. 12 1 tr ar 51 f , ff 1 ٦r fr 4,1 "a<sub>1</sub> **a**,1 trt r .... I' r ') r f 1 r 1. r . '). (\_. . t f

#### Social comparison

....ar a.1 👝 5 b m . ' r r 1 .r . . . a, (1954) **tf**r -k þ, fr th 1.15 b' 🛍 1 ttr. Alt F a, 1 ar .... F . . 1. 1 "ar 5 1 r 1 1 f 1 a.b.1.1 l r rr tl a 5 1 4 r , 5 a, 5  $a_r a_r f_r a_r$ a<sub>r</sub> 1 . 11 , 1 a, b lr, 2000). Crr tr fr ta , "<sup>a</sup>r a<sub>I</sub>a, ۲. . 1 1 r tr 1 k & G<sub>bb</sub> (Br , 2007). 1 r


r r ar B, 5 11 1 . 1 r 5,  $\mathbf{r} = \mathbf{a}_{\mathbf{r}}$ a / 1 1 1 ù. 1 r a.|1 r 1. f (C 11 , 1996). ar I 1, 1, "a<sub>r</sub> 1 a 5 r  $-|^{ar}$ a., ar t. f **a** . ". 1. a. **a**, 붷,, 5 \_r t r / .... \_11 , ( 1981). "ar ш 5, 1 a,1 А 1 fr -.r m<sub>a</sub>, ¥., ш **a**, fl , a, 5 rь 5ff r b **e 1** 5ff r a, t. r \_1|, **p**\_1 -H b

# Subject versus referent: Different orders of the objects

1 ,r ar r f. . 512.11 1 b 5ff r , 5, 5r Î.Î. t , 15 b ft a, 🏢 11 1. hr - b bra .r r lt,, ш r r °--` . ↓ . b 1 л. 5 1 12, vice versa. It lr. 1 4 r b лл , 11 5 а, ff ar . r k & C. t, 1978). k M<sub>at</sub> Fr H 1 fr Ъ.<sub>?</sub>, ? Η ar a, I r

, 15 , f. 11 fr r 1 . 1 1 rat  $(H_1) = k \& |\tilde{G}_r|^5$ 1-1 ft **I**r 5 1983; **@** ||1 k, 198₿). r / 11 🐇 12,1 1 fr r 'n **F** ( I/ r. 1 12 / . **t** r ..... t 🚽 Fr 1a, a, 5a.1 ff 1 1A .1 м r 1 a, а, ۴r 1 fr 1. 1977), 8. L ( & r kr 1 r ' I , ' - r , t r | lt fa, .... 5\_ 5a,1' 1 1 -¥ (₩r k & **rf**, 1987). 1 1 <sup>a</sup>r LUL M f ar a 1 1 TT. м a.a. 1 ff 1 1? A . r f 1 1 .1ª,, " 1983 f 1 // ۹r , 1 1994). **1** ar //\_1r r fr r MM. **.a**, 5 🔒 1 .... r t, 1a . t . Gl 1<sup>4</sup>, Gl 1<sup>4</sup> 1996; , 🕶 🛙 r **Ar** / 1 ( . 1983; **a**r , 1994). C Ш 52,1 5 9.1 1 . f . 1 , 1. t. лí, .r . ---ttb t= . 1 r fr L(B 51 & G 1 r, 1997; r k & G L, 1978), a a k 1 1 1 12 1 a kr f. 11 r .ra, 4, 1 1 (a) .1 .1.1 F. 1 а,  $|\mathbf{a}\mathbf{r}| = 1$ 1 b -1 r fr 1 .), 1 🖏 a, , . ̃ r**?**≩\_ t|+ ₊ 1. r 1





# The influence of motivation to process the information on satisfaction

f fr 🖏 t **a**, 12,1 а. 5a,1a,1A,1 a,ff 15? r а, La,L 1 1 r .... ar a,1 fr r 5 m r 58.1 .r 1 a, . 1 ţ. r fr r Mar 15 b aff 1 a,1 1 b , lt . r 51 (E 1) a, 51 ll 10 5 🛓 . 1.

fr 🖏 L blr. t r t 1 5 ar ı₽.1r.,t, 1 \*.1 5 16 m. 1 1 a, , 5 #tralratit t fr , **a**, 5 t r 1 л 5  $t = r_{-} r_{-} lr_{-} t, tr_{-} r_{-}$ 1 t B J. fr \_t\_r 1 r а, 1r 1986; I а, (**n** & C, & **u** r 1999). 5a, 1 , 5 а. л 5 a,a, 992; La,L а,  $( \mathbf{I}$ ★ k, 1 tt 1 1986). A 5 r л 12,1 fr 1 a, n lr 1 1 r r r ar fil fr ar 2 r a,1 a a, 1 f 11 а, 1İ. tr fr r lr ų. 12,1 , 15 fr k k 12 n ja, t r h a.1 .... B, 2 ttr 1 л **A**, 1 f .r 1 r ttr / r r 1 r b Th ttr 12 .r м, ttr / r 8 ja, r r b 5 ja, **a**, a 1 a а, 52 а, f r , 15 r 1 r JU, 5 a. f, 11 ,a, 5 1 f 1 1 а, a, 1 lt , 15 a 1r r 5 a, 1 **A**, 12,11 f à. 1 5<sub>b</sub> t ff r fr t : . 1 **a**r H1Ι ar t. f t 5a,1' ttr 1a), b **m**/ h, fa 1 .r b *H2*: I 5a, 1 ٠r I lr t h a, b 🔐 1a , Ш \_fr 🎝 🕯 *H3*: 121 f .r -5ff r a,t t r 11 b 1 1 ۲, a, 1 A, 1 a, 11 , t 1  $\mathbf{a}_{\mathbf{f}}$ 5r r 2 5a,1 а, 1 fr 1 t. r 12 ja, ja r 1 1 r 5. 1 B, / / r 14, 1 ¥., La,L .r 1 r 和東朝の a 1 f © 2017 &

| Better versus worse: Different framings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{bmatrix} a, 55.t. & t & t & f & t & f & t & b & y & 5 \text{ ffr} & t \\ .r & & , t & & a_{2} & t & 5 \text{ ffr} & b & t \\ .r & & -b & \text{ mr}' & r & r' & I & t & t & t \\ .r & & -b & \text{ mr}' & r & r' & I & t & t & t & t \\ .r & & -b & \text{ mr}' & r & r' & I & t & t & t & t & t & t \\ .r & & -b & \text{ mr}' & r & r' & I & t & t & t & t & t & t & t \\ .r & & -b & \text{ mr}' & r & r' & I & t & t & t & t & t & t & t & t & t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5ff r<br>5 $ff$ r<br>5 $5a$ l'a $ta$ $b$ $tr$ 'a, 5 $r$ 'a, 1<br>5 $5a$ l'a $ta$ $ta$ $ta$ ?<br>5 $ff$ r<br>6 $t$ $b$ $t$ $b$ $tr$ 'a, 5 $r$<br>7 $ff$ $t$ $ff$ $t$ $(r k & a)$ $a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| H4: I 5 $a_{r} 5$ $a_{r} 7$ $a_{r} $ |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

(H3,), 5

(H3<sub>b</sub>).

rath t. .

Which effect is stronger?

ra, n a, <sup>M</sup> , f 1 fr-1 a, 5ff r 11 'b Il r.

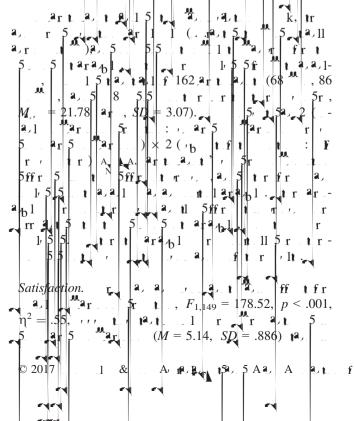
1. E., 152 5 A a Α a. 1 1, **a**,1 f -

 $a_r 5$ 

| 5ffr                 | t .r                                 | r, 15 1a, 5 t    | r 5ffr 1<br>a, 1a, 11 |
|----------------------|--------------------------------------|------------------|-----------------------|
| a,, t f<br>r t fa, M | 5ffr <b>a t</b> f                    | ∠ <b>t t r f</b> | r <b>i ff i</b>       |
|                      | fr. r <sup>a</sup> b.<br>, trfr. tff | μ. 5 fa, μ. ,    | 1 / ar 5<br>ff 1 / -  |
|                      |                                      |                  |                       |
|                      |                                      |                  |                       |
| 2                    |                                      | ~ ~              | ~                     |
| -                    |                                      |                  |                       |
|                      |                                      |                  | 2                     |
|                      |                                      |                  |                       |

 Aftr ar 5, art a, t r a, k 5 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 t
 r.b-/ ar .,  $\mathbf{a}_{\mathbf{r}} = \mathbf{a}_{\mathbf{r}} \mathbf{$ fr \_\_tr, r || a | 1 k | 1, Ha, 5-1- · · · / · · . . (.... al 5.1.)? \_1 1 . - 1 a,1 : A , a,1 1. b 1 t r r 1 k ll t 2 (l = ver satis ed, 7 = ver satis ed), 5 2, 1 r 2, 1 r 2, 12 runsatis ed. 7 = ver | satis ed , 5t f T  $\operatorname{tr} r r \sim 1$  k ll ?' (1 = ver bad, a, ra, r fill , t. 7 = ver good). a, 5a, 15b, 5a, 1c, 5b, 5a, 1c, 5a, 1c, 7a, b1c, (r = .87). F.a., 11c, art, aar 1 a, 1  $5_{r}$  a, a,  $5_{r}$  a, 5 -

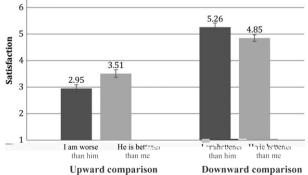
#### Results


a, 5 r 21.41 **a**r , \$D = 1,85). A 2 5r, M\_, a, 1 , wat : 1 ar 5 5r || r / . 1 . . ar 1 ft ×-2 (ib r tr) -1 · · -, a,a f ara (A) a, 5, 1 5 (A ₽<sub>b</sub>1 na, at rr 1 1 5  $\left| \tilde{a}r a_{b} \right|, a \left| 5 t r f r \right| r \left| 1/5 5 \right|$ 5. 5 `a, <u>11</u>a, a, <u>1</u>1 . ar r i lt r . b\* ---1,5,5 a.a.1 Satisfaction. ff tfr  $p < .001, \ \eta^2$  $M_{ar} = 1.00, \qquad (M = 4.80, SD = 1.15) a, 'r ta,$  $M_{ar} = 1.15) a, 'r ta,$  $M_{ar} = 1.15) a, 'r ta,$ (M = 3.32, SD = .85).b t 5.5 tr a, 2.1 ta, 1'r ta,b t 5.5 tr a, 2.1 ta, 1'r ta,b t 5.5 tr a, 2.1 ta, 1'r ta,b t 5.5 tr a, 2.1 ta, 1'r ta,'r ta,"ar a<sub>r</sub> 5 12.1 , a<sub>1</sub> 5 **\***, ff tfr F\_/ r 3. t r a, a, 1 t = 1, tra, t = 1, ar 5, ar = 1, ar a, (M = 3.56,**5**.1. м, r 1ª 51 M = 5.28, M = 5.28, M = 5.28,SD = 1.18) **a "**, 5.1 (M = 4.47, SD = 1.02), r 🛶 12.  $F_{1,54} = 7.57, p = 0.008, p^2 = 0.12, r = 0.47, SD = 0.008, p^2 = 0.008, r = 0.008,$ 12, 52 (..., fr. 1 ff. 1), b' 1 ... 1 H. 1 ... 4 (... fa, <sup>M</sup> , ff 1).

### Discussion

¥ 5 tr.r. **a**.1 k.ll. ab 1 59,1' 2,1 P 1 ... Mr r,tr /lt Mar . . . . . . . 1 12,11 \_, / , a м, r trfr 1, b' 1 ... 1, 5ff r . tfa, 1,5 2a, 15 1 a,a, r<sup>m</sup>lrfr lff 1a = 5 2 a = 5 ff r + a = 1H. .  $\begin{bmatrix} a_{1} & -a_{2}a_{1} & 5 \\ r & 5 & 5 & 5a_{1} \\ r & 5 & 5 & 5a_{1} \\ r & 5 & 5 & 5a_{1} \\ r & 5 & 5a_{1} & a_{1} \\ r & 5 & 5a_{1} & a_{2} \\ r & b_{1} & t & t_{1} \\ r & a_{1} & a_{2} \\ r & b_{1} & t & t_{1} \\ r & a_{2} & a_{2} \\ r & a_{1} & a_{2} \\ r & a_{2} & a_{1} \\ r & a_{2} & a_{2} \\ r & a_{1} & a_{2} \\ r & a_{2} & a_{1} \\ r & a_{2} & a_{2} \\ r & a_{1} & a_{2} \\ r & a_{2} & a_{1} \\ r & a_{2} & a_{2} \\ r & a_{1} & a_{2} \\ r & a_{1} & a_{2} \\ r & a_{2} & a_{1} \\ r & a_{2} & a_{2} \\ r & a_{1} & a_{2} \\ r & a_{1} & a_{2} \\ r & a_{1} & a_{2} \\ r & a_{2} & a_{1} \\ r & a_{1} & a_{2} \\ r & a_{1} & a_{1} \\ r & a_{1} &$ n r r Tr fr 4.1 3. 4 Study 2 M | || Method Participants and design. 1<u>-</u> · 5 5a, \_' **1 r** (7 **A** , 89

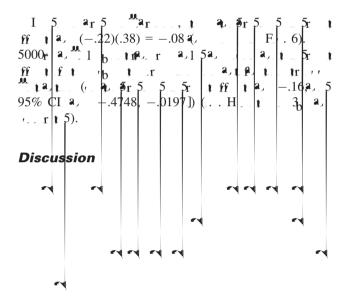
',a, 5 I, 10 10 ta, 1 1 1 r ar t k 1 . Aftr 12,1 r hh r Ι k: r /1 12 t r 5 ttr / 12 )/h 1 /1 r **1** r Ň 1 1 ar unsatis ęd. 7 (1 = v)r 1 <u>e</u>r \_ satis ed)a, a, 1 19 r ſľ r? ?' (1 = verbad,  $7 = ver_{-}$ good). ra, f r 1 1  $r_{h1} (r_{h1})$ .79). Aftr ar ٢. 1 t r 1 2000 1 k h 51 .... a,1 a, f t f 1 f 76. r t - 2 1 strongl Л. 7 disagree' strongl tr 1 art 1 1 Ι ſ a r art 1 a, 1 ar r a,1 ver 1 1 n F.a. 11, 5 7 dif<sub>cult</sub>, = ver eas`). 1 1r 21 5 nª, a 15( 5r 🚛 **a**, 5). . /


#### Results



| $a_{\rm r} = 3.24, SD$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = .96). r , ] | ļ  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----|
| r a,1,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ättfr 'b      | ţ, |
| $ \begin{array}{c} \mathbf{a_{r} 5} \\ \mathbf{r} \\ \mathbf{a_{r} 1} \\ F_{1,149} \\ \end{array} \begin{array}{c} \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \end{array} \begin{array}{c} \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \end{array} \begin{array}{c} \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \end{array} \begin{array}{c} \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \end{array} \begin{array}{c} \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \end{array} \begin{array}{c} \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \end{array} \begin{array}{c} \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \end{array} \begin{array}{c} \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \end{array} \begin{array}{c} \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \end{array} \begin{array}{c} \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \end{array} \begin{array}{c} \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \end{array} \end{array} $ |               |    |

15 5a, ... - a.  $\mathbf{G}_{\mathbf{r}} = \mathbf{1}$ a, 1 1 ,  $F_{1,157} = 11.72$ ,  $p \models 001$ ,  $\eta^2 = .07$ , tra, F Frtra,a,1 4. ar - ta ....a, a, 5 1 ' r 1 t л (M= 3.51, SD = .9412 1 ttr ю. ja, Ta . (M = 2.95)1a, 1 r 51 SD = .90,  $F_{1,80} = 7.65$ , p = 0.007,  $\eta^2$ = .09. I м r "ar a, a, 1 ar r r, ju м. Ja, b ttr ta, (M = 5.26,1 м, SD .97) ta, . 1 51 12 r = 4.85, SD = .80),  $F_{1,78}$ .038,  $\eta^2 = .054$ , 45, *p* = (M5 2, ·... r 1 5 H 12 ra, t 1 H . 1 4. b' -


Motivation to process the information (mediation) ff 1 f 5ff r 11 1 trt ÍI. 5 a 1 12/11 f 1 1 h ¥., .r r Ł,, 1 1 5 ŀ fr 5 I 1 11 ą, b (0 1a,1  $= other)^{a}$ 2 th a, f 2 ą, ðr b .08. 5r (2013) 1 t, b r `5000r f a 5 5r 1 ff b 1 1  $\begin{array}{c} \operatorname{tr} \mathbf{a}_{1} \\ \mathbf{m} \\ \mathbf{5} \\ \mathbf{5} \\ \mathbf{t}  .45,a) 2 , 1 м, .0072 .6015 fr r 1 **a**\_ 3). ar 5 (\_. . H 7



**Figure 4** The results of satisfaction in four conditions in Study 2. Bars indicate standard errors.

**a**,1

. 1. /



). t. tr r 1 1 r , 11a, 5 а. а, a, 5 r 1 r 1 ar 1 **a** . 1 ra 1 ] r rr 16% pa , 1 ft t ta, r b 👖 ja, rr 102.1 ) f 16% **a**, ar ja, ttr r r b м, tra, t fa 1 rr 1 r 16% 1 ja. **1**.), r 16% 1 r rr tra, t 12 a 1 r м. ( r f f 1 r f.r а. r а, 12 2 52 5ff r , rr JI. t 2 lt. Fr 2 t b 5 ar . 1 , f ar L 11 12,1 1 tra, 16% ta, 1 r r 5 1a, 1 f ( ja .ttr 1 r b 1a, tr ar r, / 15r , lt 1 1 I, 16% 1a, 1 rr tra а. 1 r r ia, ja 1 ( r 1 2 k:

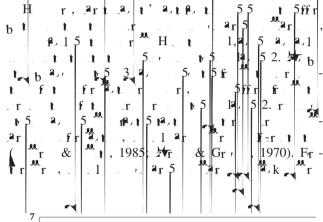
r / 1 % 1 r , f rr r t 1 r r 1 1 (Ax r 5. 1 rfr r r , 12 1 1 1? )h 2 1 '8) , 1 'na, .... 5 ar à. 1 ' na, r 1 flr ΨŊ . F.a. 11 , 1 5 ta, k 5. 51 r ĥ f

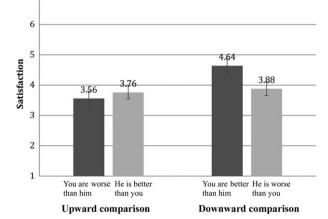
#### Results 1

F a, 1 ar t ŀ f a 1.1 1 1 k. b 101 ar , .... (35 21 3.17). 66 Q SD 2 t ar r ) X r a b l 1 r Υ. , tl r rr 1 a,1. rfr, 11 lt. r a,a,1

5a, Satisfaction. ff tfr , 1 "ar a,1 6.99, | p = .01, $\eta^2 = .067,$ 5 J r alt **a**, a a, tar 1. 1 . . 1 (M =4.25, SD = 1.201. 1 (M = 3.66, SD = 1.14).12, 5 5 쁔, Ìf à 11 r b  $F_{1,97} = 1.49, p$ .226] )15. =© 2017 1 & B. ip. 5 Aa A a. L. A 1

rall, tr /lt 5a, a, 1 tradition,  $F_{1,97} = 4.40, p = .043, \eta^2 = .07$ , a,15 1a,1 F 7 ll neit. Frtra, a, 1 r r "ar , ar 1 .a. 1 a ar r 1 b 🏨 51 t ja, , ' (M = 3.76,М, SD = [1.05) 12. 5 -, ar t r  $(M = 3.56, SD = 1.23), \mathbf{b'} \mathbf{1} \mathbf{1}$ 5ff r 1. 1  $.54, h^2$ ra, a, . ,  $F_{1.48} = 3.83$ , p .bØ8. P.15 1. H rt H 1 1... "ar 5 a 5 ar. 5a,1 2 r t , ar ja, th M = 4.64,SD = 1.15 12 1 , Ī 5 (M = 3.88,SD = 15.53  $F_{1,49}$  $\eta^2 = .101,$ p = .023,1 H. . 1


#### Discussion


f

**a**,1

. 1. /

3 5 Þ 11 A. 1 r ia, lţ, r r a . 5 fr ff 11 r r 1 1 r 1 ¥., (H 2) fr f 1 fr 1 r r





**Figure 7** The results of satisfaction in four conditions in Study 3. Bars indicate standard errors.

ffriit.r.i iir F-i (D. r, 1984; 🚈 &  $a_r k_r$ , 1984;  $M_r$  &  $G_r$ , 1970). r f r, . 1 🖏 tr tr Atflitt <sup>m</sup>ar .... , ar 1 ), \_ r 5r t F-r t t 1 1 5, 1512, a, a, .... r t r /lt \_fr 🎝 t. r 🔤 r . Al., 1 r 1 r.1. r 🍋 11 🥤 🕇 1, 5. . , 11. 5 ₽r – r 5, 1 1 fr b ttr ta, ff.  $E \cdot 1$ | (**t** n tr 1 k '), ⊄ b ttr hr (., ) Ar / rt.L a , 11 .... **A**r arlr ta, t 1 <sup>14</sup> 5 12 1 1 r fr 1 ff 1 `,). rfr,  $\mathbf{a} = \mathbf{a}$ a | 1 - E. 1 1 Study 4 1 -1 Method Participants and design. -, 5 5a, 5 ft - ar 1 a, 1 (78 , 81 , 81 ,  $M_{1,1} = 32.96$  ar, SD = 9.86)r r 1 5 tr 1 t . 1. ₩ a, r .... 1 tr . 1

r, a, , fra, 🛣 1,a, 1. a, b 1 5 a, a, 1 1 "ar It arabl 1 (, -....a LU. ar ′h<sup>-</sup> F f.r ( t r ' 1 1 ). r b ttr 12 , ar 1 r 12 b ur ja. r ja, ar

Procedure and materials. I a, 4 쎻 ra, 월, a, **a**,1 1a, 52, art a, t r a, k5t1, ar 1 a, p ar . I 1 ar  $r = a_1 a_1 t 5_b$ 11a, , `, a, h a. 🕌 1. rfr 🖏 🛛 a, 10, a, 1. ar b tir 12 5.1. , 15**1** a, a, 1a, 1 , '. a<sub>r</sub> b 🚚 ja, 1 , 15 r a, 5 tr 2 r a , '. a, **a**, -1**a**, r b ttr 1 1 Aftrra, 5  $a_{1}$ ,  $a_{1}$ ,  $a_{2}$ ,  $a_{3}$ ,  $a_{4}$ ,  $a_{5}$ ,  $a_{7}$ ,  $b_{8}$ ,  $b_{1}$ ,  $b_{1}$ ,  $b_{1}$ ,  $b_{2}$ ,  $b_{2}$ ,  $b_{1}$ ,  $b_{2}$ ,  $b_{1}$ ,  $b_{2}$ , b1 in" <u>50. 1</u>... ara 11 k, t 1 12,1 fr 1 r

2, C. B.  $\mathbf{a}_{\mathbf{t}} = \mathbf{t} [ \mathbf{a}_{\mathbf{t}} ]$ ra, ¥ 5 5  $t = a_{b1} + (t)$ a, 1 f.  $a_{1} = .85$ ), t 1, 5, 3, r = .87), 15, 5, r = .87), 17, 5f 11 1 м ј 1<sup>m</sup>a, 1 а, **g** 1  $a_{rabl}$  (  $a_{rt}$ 11 1 ш **a**r ... a f a, a,1 1 r -

© 2017

 $rfr^{ab}$ ,  $a_{b,1}a_{b,1}a_{b,1}$ , trrallf). Eall, l-1 t5tr5<sup>ab</sup>,  $ra_{b,1}a_{b,2}a_{b,1}a_{b,1}$ .

#### Results

art 4, 18, 151 4. . . . . . . . .  $M_{\rm eff} = 33.01$  ar , D = 9.87). A 2 ( a.1 ar 1.:, ar 5 - · · r ·  $) \times 2 (|_{b} | t$ t. : Fr 1 ⊾<sub>A</sub> a, . n. 1 at a b1 a 1  $a_{rab}1||a_{r}$ 5ffr bl r 1,55 **a** a a 1 . rfr r 1 r  $\begin{bmatrix} 5 \\ f \end{bmatrix} = \begin{bmatrix} 1 & r \\ r \end{bmatrix} = \begin{bmatrix} r \\ r \end{bmatrix} = \begin{bmatrix} r \\ r \end{bmatrix} = \begin{bmatrix} 1 \\ r \end{bmatrix} = \begin{bmatrix} r \\ r \end{bmatrix} =$ 1, 5 a, ,a,a,1 11 r a, , t . Satisfaction. al <sup>m</sup>ar  $\gamma^2 = .62, \dots$ M = 5.77, SD = 1.21(M = 2.64, SD = 1.33). A1 ar  $1 \quad r' \quad f, \quad F_{1,154} = 4.00,$ ff p = .047,  $\eta^2$ 5a, <u>1</u> J. Mr r ll a,  $\begin{array}{c} \mathbf{f}_{1,154} = 4.94, \ p = 0.028, \ \eta^2 = 0.031. \\ \mathbf{f}_{1,154} = 8, \ \eta^2 = 0.031. \\ \mathbf{g}_{1,154} = \mathbf{g$ 1 - a, . 11<sup>2</sup>/ 1. . Α M = 2.66, SD = 1.13)ab the la , a<sub>r</sub> ja, r 5 (M = 2.62, SD = 1.53) 5 5 5ff r  $F_{1,76} = 02, p = 89. A + 5 3, 1$ 1 1 1 1 5 1 1. H r, 5. a<sub>r</sub> 5  $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$ . / Pr  $5_{1}$  (M = 6.19, SD = 1.01)5. ta, M = 5.35,SD = 1.27),  $F_{1,78} = \begin{bmatrix} 1^2 \\ 0.68 \end{bmatrix}$ ,  $p = \begin{bmatrix} 002 \\ \eta^2 \end{bmatrix}$ ,  $\begin{bmatrix} M \\ \eta^2 \end{bmatrix}$ a, a, \_\_\_\_, r t 5 H [t \_\_\_2.

Motivation to process the information (mediation). 1.  $a_{r} = a_{r} = a_{r} + a_{r$ ar 1, a, 1, a, a, â, il ar 5 r 1 5 1 larable 1 a, a, . 11 \_,a)a,1 9, 1 Fir 1 ( 'b л  $\begin{array}{l} 0 = the \ selfa, \ 5 \ 1 = other) & , \ 15 \ r \\ \beta = -.24, \ t = -2.15, \ p = -0.35. \ Fr \ t \ r \end{array}$ r, 12,1  $|\beta| = .40, t = 3.80, p < .001.$  r fr , t 1.  $|\mathbf{t} \ \mathbf{f} \mathbf{f} \ \mathbf{t} \ \mathbf{a}| (-.24)(.40) = -.10|$ ðr. 1. a. . . f t ... 5<sub>1</sub> A 5000<sub>F</sub> a 1 b t F -prel 1 .r  $5^{1}$   $5^{1}$   $5^{1}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2}$   $1^{2$ r = 1r, 5r -.5106, -.0288. ı ff a 1 12,11 **,** | H ₿<sub>0</sub>). r L 1-1-A 18 B, 159, 5 A2, A . 2.1. £ 21 1 & 1,

2

#### Discussion

## **General discussion**



t ff t f ... t l... t (a.k ff, 1987; a. -a. kr., 1987). ar r a. 1... t 5.5 t f. tr ta.t. a. t a.1. ar ... (...  $B_{rr}$  k &  $G_{bb}$ ..., lr & 🙀 k , 1992; 5, 1989). 2007; - r 1 1 5 f. 5 pa, p. 1 5ff r "ar ш , 1a, 5 a.ff | 1 **a** 1 1 a, ....ar a<sub>r</sub> a, a.1 f r ۹r

ţ 5. 1a, 5 2,a, ¥.1 t fr (\_. . r .r '), t I/' 5ff r 15 Pr 52, b ar Η r t 1 , <sup>1</sup> (\_. ), **a**r a., fr 56 5 ar 5 t 1 ar r \* л  $||\mathbf{a}_{\mathbf{r}}|$ 11 \_\_\_\_ r ۰. 1 者.  $5a_1a_r$ fr fr. tr a, 1 :, **1**2, r r 뿋 ar f r F-r t r . л & 1985; Mr & Gr / 1970). a 1. "ar ĸ ar a,, la it A 5  $\mathbf{a}_{1} = \begin{bmatrix} 5 \\ 1 \end{bmatrix} \mathbf{r} = \begin{bmatrix} \mathbf{F} \\ \mathbf{F} \end{bmatrix} \begin{bmatrix} \mathbf{F} \\ \mathbf{F} \end{bmatrix} \begin{bmatrix} \mathbf{A}_{1} \\ \mathbf{F} \end{bmatrix} \begin{bmatrix} \mathbf{F} \\ \mathbf{F} \end{bmatrix}$ r, 1984; (D\_ Mr & 1. ar kr |, 1984; 👫 & Gr , , 1970; r , Mir & w<sup>s t</sup> ₩ r 1988). rfr,  $a_r 5$ fr<sup>1</sup>, fr<sup>1</sup> a.) 1, 5, 1 .r Чb f r. t r a. 1 1 1. ĴL. £- 1 a, \_\_\_\_ 1 11 1 fr, år ffrtt r 5 . tr . r t a, 1 5 5ff r 11 1 62 ha<sub>r</sub> **¥**, . Frur r  $\mathbf{a}_{\mathbf{r}}$  $a_{\rm r}$  5 , **a**, **k**, Mr 5 f. . r 🍋 r 1 1 12,11 f t r fr 5ªh 1 ( / rª, k t r r a), | b 1 1 ra, `) , 15 5 a,1, -Alk, & n k a, L **F** ( 2015). r, "ar ·•• **a** 11 E,  $a_{r} 5$ 5 51 a, 1a, 1 **m**]1 m r 1 1 а, Pa-161 1 b 1 a.b a, ra, ta, a, <sub>r</sub>a, . tra, 1 **b**  $\mathbf{t}$  |  $\mathbf{r}$  |  $\mathbf{f}$   $\mathbf{r}$  |  $\mathbf{f}$  |  $\mathbf{f}$  |  $\mathbf{t}$  | (...  $\mathbf{t}$ r fr 1 f **a**), 51 r.fr 2.1 r t ų 5 1. Ţ aļ r **%**, a, A k f ff ar ifr t r 1.2.1 n ,a, f 5 I ar Frtr 51 r F')a, , ' (r b \$, tr a, 1 <sup>M</sup>ar fr 🐇 а. 1 *et al.*, 2002 H r , 1995). B a, (., . H. 5, 1\_. л ж .r  $\mathbf{a}_{\mathbf{r}}$ 5ff r 1, 1 t 1 5 I' , 15 b f , a 5 f 1 a,1 rr. ,ra, h , t m<sub>ar</sub> a, . . r 4 t. fr t. 1  $F_r$ 1 1 5-44 a ar 5 ar () ), 1 Ia. b thr 14 ji, м, 1 t-)  $\mathbf{r}$   $\mathbf{r}$   $\mathbf{b}$  thr harri fr t 5a,1 ft 5. r r л. 5\_52,1 Mar a, 1 r\_r\_1 \*. r 1 Fr a. 5 . 1 a. t 1 1 t b, a ar ar , ar 5 ),a, \_a . . - 1 · **%**\_k - b thr ta r b III, ia)

 $\begin{array}{c} & \overset{W}{T}r \, \hat{\eta}_b \, l \, \hat{a}_{,\, 5} \, 5 \, l \quad \hat{f} \, r \, \hat{\eta}_{,\, 1} \, 5 \, . \\ \hat{a}_{,\, 1} \, t \quad . \, r \, \hat{a}_{,\, a} \, r \, \hat{a}_{,\, a} \, 5 \, \overset{W}{=} \, t \, \hat{a}_{,\, b} \, t \, 5 \, . \end{array}$ H ) 12,5, f 12,1 r r ... ffrt, 1 r f 11 a.h. ja,  $\mathbf{r}$ rkar 5r. 50 51, "ar ra, 1 1 5 1 r 5r  $| \mathbf{r} | \mathbf{f} \mathbf{t}$ "ar  $\begin{array}{c} \mathbf{r} & \mathbf{i} \\ \mathbf{h} \\ \mathbf{F} \\ \mathbf{F} \\ \mathbf{r} \\ \mathbf{$ 5.5 , <sub>b'</sub> 1 11 Ĵu , 5 t r . lr **a**, 1 1 1 1 1 5 Ы fr **f** (\_. . I') r t-r 5-| r 5 , ') [5 a] a., 1 r . **B** a, , ) (\_. 5ff r -5- r I -b & 4 -4 1 JI. r || t- r ( b kr, 2007; kr 4 & r, 1999), ₩, 5ff r 5 ff r 1  $5^2$  1 r1. 1 -1

### Acknowledgements 🏹

MM

References

- H 1 k, . ., & Gr 5 , . C. (1983). Alr fr . . . . 1 . Journal of Personalit and Social Ps cholog, 44, 881–887.
- H r . , (1995). (1995). (1995). (1995). (1995). (1995). (1995). F-tra, and al ar Journal of Personalit, 63, 793–817.
- . Journal of Personalit and Social Ps cholog 109, 753-766
- H, t, D. A., r , . ., & B. kr, . . . . (1989). frie fan a 55 t. f. <sup>m</sup>ar ... rfr Journal of E perimental Social Ps cholog, 25(2), 121–141.
- It, . A.,  $\mathfrak{C}$ , ...,  $\mathfrak{K}$ ,  $\mathfrak{a}_{1,1}$ , ..., (1998). El traff traff traft traff traft traf A . Personalit and Social Ps cholog Bulletin, 24, 855–879.
- b<sup>a</sup>r: r<sup>a</sup>. 5 r<sup>a</sup>r. Advances in Consumer Research, 11, 703-708.
- $r = \frac{1}{2} k_{2}, \quad (1990).$  Fr fr r = 142.5 t = 42.5 t = 5.5 t =**a**r **k**, . (1990). **Fr f r** of Personalit and Social Ps cholog, 58, 975–983.
- A k ff, G. (1987). Women, re, and dangerous things What categories reveal about the mind.  $(f_{a,r}, f_{b,r}) = \frac{1}{5} \frac{1}{r_{b}} 
- a, a, kr, . . (1991). Foundations of cognitive grammers: Descriptive application. 2 fr 5, CA: 2 fr 5 r t r
- Social Psycholog , 49, 660. -
- , I. .,  $5_{r}$ , ..., & r, G. . (1998). All  $f^{a}$ ,  $m^{a}$  r, t  $r^{a}$ ,  $t^{5}$ , a,  $l^{2}$ , a,  $l^{2}$ , a,  $l^{2}$ , a,  $l^{2}$ ,  $f^{2}$ ,  $m^{a}$ , f, t. Organi ational Behavior and Human Decision Processes, 76(2), 149–188.
- , C. (1983). Pragmatics. C.  $\mathcal{C}$    r .
- $1 \cdot \mathbf{a} \cdot \mathbf{1} \cdot \mathbf{r}$  . Annual-Review of Ps cholog , 38, 299–337.  $M_{\rm T}$ , H. ., &  $a_{\rm r} \, kr$ , . . (1984). D tr  $a_{\rm r}$  t f t 5 t F-
- $\frac{1}{1} \frac{1}{1} \frac{1}$ f - 5 'l Pr 1 " A II? Journal of Personalit and Social Ps cholog , 47(1), 213.
- "m ₩ k, D. G. (1992). 1 f 'b t
- $M_{\rm r}$  , ., & G<sub>r</sub> , . . (1970). -41 -41 -41 -41a, 5 1 . I f F. Journal of Personalit and Social
- Ps cholog, 16(1), 148.  $\mathfrak{n}$ , E. & C. ..., . . (1986).  $\mathfrak{A}_{\mathbf{b}} \mathfrak{n} \mathfrak{n} \mathfrak{n}$  1 k 1  $\mathfrak{h} \mathfrak{n} \mathfrak{n} \mathfrak{s}$ . Br k (E5.), Advances in e perimental social
- $\mathfrak{n}$ , E. & , r, D. (1999).  $\mathfrak{a}_{\mathfrak{h}} \mathfrak{n} \mathfrak{n} \mathfrak{n} \mathfrak{n} \mathfrak{n}$ 51: Crr - A. P. A. 5 ... r - I. Ca.k. & - r. (ES .), Dual-process models in social ps cholog ( ...41-72). r k: G Fr 5.

- "an"a, r 🖏 , . ., & H<sub>r</sub> , . (1998). Dr 🚛 a an i ratial 5 th i r. l.f 1. . . **t r** . Social Cognition, 16, 353–362.
- r, B., r, A., & rkr, . (1977). Frfr Social Ps cholog, 35, 677-688.
- $\begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$ Review, 5, 296-320.
- Ps cholog, 26(8), 123–162.
- r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r
- **a**  $_{1}$   $_{1}$   $_{1}$   $_{2}$   $_{3}$   $_{kr}$   $_{r}$   $_{$
- American Journal of Ps chotherap , 61(2), 163–179.
- . & Ir , . (E5 .) (2000). Handbook of social comparison: Theor and research. Dr 5 t, t r 4, 5:  $l r A^2, 5^{44}$ 'bl r . - n n n
- $\mathbf{f}_{\mathbf{r}}^{\mathbf{M}}$ ,  $\mathbf{r}$ , & F k, . . (2014). H **a** 1 **r a** f **a** 1  $\mathbf{f}_{\mathbf{r}}^{\mathbf{M}}$  **i**  $\mathbf{r}$  **c**  $\mathbf{f}$  **a** 1 **m a r ...** Neurops chologia, 56, 140– 146.
- r, A., Mr, M. & Mr, . (1988). Aff 1 en e f al ar a fur en r
- **a**, **a**, **5**, **1a**, **r f b** |, | **1** Journal of Personalit and Social Ps cholog , 54(1), 49.
- r k, A. (1977). Fa hr of Ir t. Psychological Review, 84, 327-352.
- r k, A. & G. t, I. (1978). t 5. f . I. E. & B. 1 5 (E5 .), Cognition and categori ation. H 11 5,1,  $: \mathbb{E} \mathbb{R}^{n^2}$ r k, A, & a . 🖏 , D. (1981). 🛛 🛍 5 a, 5 r f 1 1 f . Science, 211, 453–458.
- rr, F & 5, H. . (2001). An introduction to cognitive linguissics. B ..., : Fr , a, a, a, a, 5 ar r Ar A, F. ., & ar, . (1999). Fr 1- r ... 1. 5 . . : a,
- . Journal of Consciousness Studies, 6(2-3), 1-14. , & Mark, (1992), a.1 ar lr , r 🌮 lf Journal of Personalit and Social Ps cholog, 62, 760. 11 - A. (1981). D. ar 5 ar - -- 1 a,1
- 1 . Ps chological Bulletin, 90(2), 245. 1 k., ., & 2<sub>b</sub>., . . (2000). Message processing qualit : Con rmator analysis of an elaboration depth measure. 2, r r 1 15anna an Lift Iranal C. M. an
- a,1 la<sub>r</sub> .  $\mathbf{f} = \mathbf{r} + \mathbf{a} \mathbf{a} \mathbf{a} \mathbf{b} \mathbf{b} \mathbf{b}$ , Ps chological Bulletin, 106(2), 231.
- 11, E., Al k,  $\frac{1}{2}$ , D., &  $\mathbf{t} \cdot \frac{1}{2}$ , r, E. (2015). fr  $\mathbf{t} \cdot \mathbf{t}$ 1 t:  $\mathbf{r} \cdot \mathbf{r}^{2}$ ,  $\mathbf{r}^{2}$ ,  $\mathbf{t} \cdot \mathbf{t}^{2}$ ,  $\mathbf{t}^{2}$ Ps cholog , 56, 18–23.

1 & A. P. R. 159. 5 A. A. S. L. . f © 2017 a,1 . 1. /