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Abstract
Academic cheating is common, but little is known about its early emergence. 
It was examined among Chinese second to sixth graders (N  =  2094; 53% boys, 
collected between 2018 and 2019) using a machine learning approach. Overall, 
25.74% reported having cheated, which was predicted by the best machine learning 
algorithm (Random Forest) at a mean accuracy of 81.43%. Cheating was most 
strongly predicted by children's beliefs about the acceptability of cheating and 
the observed prevalence and frequency of peer cheating at school. These findings 
provide important insights about the early development of academic cheating, and 
how to promote academic integrity and limit cheating before it becomes entrenched. 
The present research demonstrates that machine learning can be effectively used to 
analyze developmental data.
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I N T R O D U C T I O N Cheating is a common human behavior. In childhood, it often takes the form of academic cheating (Waltzer & Dahl,� 2 0 2 0

), which we define as an intentional act per-

formed surreptitiously and illegitimately for the purpose of achieving a desired academic outcome. Academic cheating has serious negative consequences because it 
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How well the predictors are able to predict the depen-
dent variable across the multiple data partitioning and 
recombination processes can be evaluated statistically, 
which essentially provides an assessment of the inter-
nal validity of the models' predictions (Campbell, 1986; 
Diener et al.,  2022). Furthermore, by using the resul-
tant distributions of model performances, one can es-
timate effect sizes and the likelihood of false positives 
(Type 1 errors).

Second, the modern machine learning approaches in-
volve dividing the data into training, testing, and hold-
out subsets. Then the models from the training–testing 
process are further validated against the holdout subset, 
which has never been used in either training or testing. 
Thus, how well the models perform with this subset 
provides a statistical assessment of the generalizability 
of the models and their potential reproducibility with a 
new group of participants. In other words, this valida-
tion against the holdout subsets provides an assessment 
of the models' external validity (Campbell, 1986; Diener 
et al.,  2022) and can help to address the current repli-
cation crisis in psychology and other disciplines (e.g., 
Blockeel & Vanschoren, 2007; Drubin, 2015).

Third, in the modern machine learning approaches, 
we can choose a variety of different machine learning al-
gorithms to analyze data. They include multiple linear re-
gression or logistic regression (LR) analyses, which were 
among the first types of machine learning algorithms to 
be used in science (Ng, 2017). Regression algorithms can 
be used to model the linear or curvilinear effects of pre-
dictors and their interactions. More modern algorithms 
include Random Forest (RF), Multilayer Perceptron 
(MLP), and Extreme Gradient Boosting (XGBoost) de-
cision trees (Chan et al., 2002; Gao et al., 2018; Golino 
et al., 2014; Yarkoni & Westfall, 2017). These algorithms 
can model not only linear or curvilinear effects, but also 
dynamic nonlinear effects (Kurt et al.,  2008; Stylianou 
et al., 2015; Thelen & Smith, 1994). Different algorithms 
produce different models with different levels of predic-
tive performance, which allows researchers to determine 
the best technique for analyzing the dataset at hand. 
Furthermore, using multiple machine learning algo-
rithms can help to reduce the odds of a failure to reveal 
a true significant association between the predicted vari-
able and the predictors (a false negative or Type 2 error).

Fourth, modern machine learning approaches can 
use the Shapley values to explain their findings by quan-
tifying the relative importance of different predicting 
variables (Ghorbani & Zou, 2019; Lundberg & Lee, 2017; 
Smith & Alvarez,  2021). Shapley values are based on 
game theory, and were proposed by a Nobel Prize win-
ner Lloyd Shapley  (1953). At the beginning, game the-
ory was used only to solve the problem of distributing 
benefits in complex cooperative relationships. Its distri-
bution principle is that the benefit obtained by individ-
uals should be equal to the value of their contributions. 
Recently, some scholars have begun to use this approach 

to measure the relative contributions of all predicting 
variables in machine learning models, and it has become 
one of the important metrics for explaining machine 
learning results (Ghorbani & Zou,  2019; Lundberg & 
Lee, 2017; Smith & Alvarez, 2021; Sun, Liu, et al., 2022; 
Sun, Luo, et al.,  2022). Because the Shapley values are 
additive mathematically, one can perform conventional 
statistical analyses on them to make probabilistic infer-
ences about whether one predictor is significantly supe-
rior or inferior to another predictor in its contribution 
to a computational model's performance. In the present 
study, the Shapley values allowed us to identify factors 
that predict cheating, from the most important to the 
least important.

The present study tested the following hypotheses for 
both confirmatory and exploratory purposes. First, we 
hypothesized that the LR, RF, MLP, and XGBoost de-
cision trees each would all be able to produce computa-
tional models that predict cheating significantly above 
the chance level. Second, we hypothesized that among 
these four different machine learning algorithms, the RF, 
MLP, and XGBoost would be able to produce computa-
tional models that predict cheating significantly better 
than the traditional LR. These hypotheses were tested 
for confirmatory purposes because they were based on 
the fact that existing theoretical models and related em-
pirical evidence suggests that cheating is influenced by 
a multitude of moderating and mediating factors, and it 
is likely that some of these effects could be dynamically 
nonlinear. Thus, because the LR only considers the linear 
or curvilinear effects of the predictors on the predicted 
variable, this machine learning algorithm was predicted 
to perform worse than the other three algorithms, which 
are capable of considering linear, curvilinear, and non-
linear dynamic relations.

Third, regarding the predictor importance, we tested 
the commonality hypothesis for confirmatory purposes 
and hypothesized that, in line with this hypothesis, 
the important predictors identified by the computa-
tional models would align with the model proposed by 
Whitley et al.  (1999). Specifically, in light of evidence 
of continuity between middle school and older students 
(Anderman & Midgley,  2004; McCabe et al.,  2012), we 
predicted that the factors affecting cheating in elemen-
tary school students would be similar to those affecting 
cheating in older students. More specifically, we pre-
dicted that as with high school and college students, 
beliefs about the acceptability of peer cheating and ob-
servations regarding its frequency would be significantly 
associated with the likelihood of self-reporting to have 
cheated on exams (Krou et al., 2021; Lee et al., 2020; see 
Zhao et al.,  2022 for related meta-analyses). Based on 
previous but relatively weak evidence among older stu-
dents that males tend to cheat at a slightly higher rate 
than females (Jensen et al., 2002; Nathanson et al., 2006; 
Newstead et al., 1996; Whitley, 1998; Yu et al., 2016; see 
Whitley et al., 1999 for a meta-analysis), for exploratory 
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the success of studies that use machine learning will pro-
vide an impetus for more developmental researchers to 
use these techniques to address a range of questions and 
advance our knowledge about child development.

The present study also has several limitations. One is 
that it only involved children from China. Although our 
findings are similar to what has been found with older 
students in the West, they need to be replicated with 
elementary school children in other countries. Second, 
in the present study, cheating was assessed using self-
report measures only. Even though we took great care 
to reassure students that their responses would be kept 
confidential, some children might not have responded 
truthfully out of a fear that their responses would be 
accessible to their teachers. Thus, the findings of the 
present study may have underestimated of the actual 
prevalence of cheating and the strength of its rela-
tions to the predictor variables. Future studies should 
use self-report and behavioral cheating measures to-
gether to address this problem. Since Hartshorne and 
May  (1928), researchers have devised many ingenious 
and naturalistic methods to assess whether children have 
cheated on a test. Although most of these methods have 
been used with older children and adults (Cizek,  1999; 
Zhao et al.,  2021), recent studies have shown that they 
can be readily used with young children as well (Zhao 
et al., 2018, 2020, 2021). Another limitation of the present 
research is that we only examined correlations between 
variables at one time point. This leaves open questions 
about how beliefs and behavior influence each other and 
unfold over developmental time. This limitation could 
be overcome by using longitudinal designs.

CONCLUSIONS

The present study used a machine learning approach 
to examine self-reported academic cheating among 
Chinese second to sixth graders, to bridge a significant 
gap in the literature regarding the emergence of cheating 
during the elementary school years. We found that chil-
dren's cheating was most strongly predicted by their own 
beliefs about how acceptable it is, by their observations 
of how prevalent cheating is at their school, and by how 
frequently they observe peers cheating. These factors 
are also significantly associated with academic cheating 
in older students, favoring the commonality hypothesis 
over the discontinuity hypothesis. The present study also 
provides important insights into how to promote aca-
demic integrity and limit cheating before it becomes en-
trenched. More broadly, the present research shows that 
machine learning is a viable and effective approach to 
analyzing developmental data.
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Q4. How often do you think your classmates have en-
gaged in each the following forms of behavior during an 
exam?

[The following items used a five–point scale: 1 = never, 
2  = somewhat infrequently, 3  = neither frequently nor 
infrequently, 4  = somewhat frequently, 5  = extremely 
frequently].

1.	 Bringing unauthorized materials to an exam.
2.	 Copying answers from a textbook during an exam.
3.	 Passing notes during an exam.
4.	 Copying answers from a neighbor during an exam.
5.	 Using tools (e.g., dictionaries, cellphones, or smart 

watches) to search for answers during an exam.
6.	 Working with one or more classmates to share answers 

during an exam
7.	 Deliberately giving a classmate a wrong answer during 

an exam.
8.	 Secretly changing a test score.

Q5. To what degree is cheating on exams acceptable 
to you?

[This item used a five–point scale: 1 = not acceptable at 
all, 2 = somewhat unacceptable, 3 = neither acceptable nor 
unacceptable, 4 = somewhat acceptable, 5 = completely ac-
ceptable] nothing special.

Q6. To what degree do you think cheating on exams is 
acceptable among your classmates?

[This item used a five–point scale: 1 = not acceptable at 
all, 2 = somewhat unacceptable, 3 = neither acceptable nor 
unacceptable, 4  = somewhat acceptable, 5  = completely 
acceptable].

Q7. To what degree do you think each of the following 
items can serve as an effective way to reduce cheating on 
exams?

[The following items used a five–point scale: 1 = not ef-
fective at all, 2 = somewhat ineffective, 3 = neither effec-
tive nor ineffective, 4 = somewhat effective, 5 = extremely 
effective].

1.	 Increasing the severity of consequences of getting 
caught cheating (e.g., giving a zero score).

2.	 Students who sit next to each other getting different 
versions of the test.

3.	 Working harder.

4.	 Teachers emphasizing that academic cheating repre-
sents a serious moral transgression

5.	 Having a teacher who is greatly liked by their students 
to teach the class.

6.	 Teachers giving sharp criticism or punishment.
7.	 Teachers recognize classroom role models by giving 

praise or prizes to students who behave honestly on 
exams

8.	 Parents being informed when their children are caught 
cheating, and the parents in turn giving sharp criti-
cism or punishment

Q8. To what degree do you think each of the following 
items is severe?

[The following items used a five–point scale: 1  = not 
severe at all, 2  = less severe, 3  = neither severe nor non-
severe, 4 = somewhat severe, 5 = extremely severe].

1.	 Being criticized by one's teacher.
2.	 Being punished by one's teacher.
3.	 Being criticized by one's parents.
4.	 Being punished by one's parents.
5.	 Being criticized or rejected by one's classmates.

Q9. School: _____.
Q10. Date of Birth:_____.
Q11. Gender: _____.
Q12. Grade: _____.
Q13. Do you have any siblings?
[Respondents selected a single item from the above set 

of options.]

1.	 No, I am the only child.
2.	 Yes, I have one or more older siblings.
3.	 Yes, I have one or more younger siblings.
4.	 Yes, I have both older and younger siblings

Q14. What level do you think your academic perfor-
mance is in the class?

[Respondents selected a single item from the above set 
of options.]

1.	 Above the average.
2.	 Average.
3.	 Below the average.
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