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This impression, however, is challenged by a growing number
of studies suggesting that the spotlight “blinks” rhythmically,
leading to alternating cycles of improved and impaired behav-
ioral performance at the cued and uncued locations (Dugué,
Roberts, & Carrasco, 2016; Fiebelkorn & Kastner, 2019;
Landau & Fries, 2012), even when sustained attention is pro-
moted at the cued location (Fiebelkorn, Saalmann, & Kastner,
2013). In these studies, a visual stimulus is first presented as a
time reference, by which the attentional cycle could be reset
and aligned across each trial (VanRullen, 2016). Importantly,
the SOA between the first stimulus (a spatial cue) and the
subsequent target is manipulated with a fine temporal resolu-
tion (e.g., 50 Hz given the SOA varying in steps of 20 ms)
such that the behavioral performance at multiple phases within
an attentional cycle could be probed (Fiebelkorn et al., 2013;
Landau & Fries, 2012; Song, Meng, Chen, Zhou, & Luo,
2014). For instance, in a modified exogenous spatial cueing
paradigm with time-resolved SOAs, Landau and Fries (2012)
showed that the improved and reduced detection accuracy of
the target at the cued location (relative to the uncued location)





given. In a high-reward trial, a correct and fast response would
result in the gain of 10 points; in a low-reward trial, a correct
and fast response would result in the gain of 1 point. In trials
where the response was incorrect or slow, no reward would be
obtained. Participants were informed that the points gained in
each trial would be accumulated during the experiment; at the
end of the experiment, the total points would be proportionally
exchanged to money in addition to the basic payment.

The crucial manipulation was the fine temporal assessment
of the behavioral performance on target discrimination
(Dugué et al., 2016; Landau & Fries, 2012). To achieve this
temporal resolution, the SOAbetween the cue and the target in
a trial was chosen from one of 46 values from 200 ms to
1,100 ms in steps of 20 ms after cue onset, corresponding to
a sampling rate of 50 Hz. There were 440 trials for each of the
four experiment conditions: high-reward, valid; high-reward,
invalid; low-reward, valid; low-reward, invalid. In each con-
dition, the number of trials with the SOA of 200 ms was 10
times (i.e., 80 trials) more than the number of trials with longer
SOAs (i.e., eight trials for each of the other 45 SOAs), to
achieve a more prominent effect of cue resetting. This was
carried out in accordance with a previous study (Fiebelkorn
et al., 2011), which showed that the deployment of anticipa-
tory attention to the cue (high probability of target appearance
immediately after the cue) could enhance the cue resetting
effect (more prominent behavioral oscillation effect than equi-
probable target appearance). The four conditions were
pseudorandomly distributed in 1,760 trials, and were then di-
vided into 20 blocks with equal length. At the end of each
block, the accumulated points thus far were presented on the
screen. There were self-paced breaks between blocks. The
trial sequences were different for different participants.

Data analyses

Behavioral data were analyzed using MATLAB, in conjunc-
tion with the EEGLAB toolbox and wavelet toolbox. For each
participant, omissions, trials with RTs lower than 200 ms, and
trials with incorrect responses were first excluded. Trials with
RTs beyond four standard deviations in each of the four con-
ditions (high-reward, valid; high-reward invalid; low-reward,
valid; low-reward, invalid) were also excluded. For each par-
ticipant, RTs from the remaining trials were then normalized
across all conditions (i.e., Z-scored); this was to control the
variance between individuals in motor responses. Note, for
each participant, after within-participant normalization, the
relationship between RTs of the trials was kept intact, al-
though RTs were normalized close to zero.

As shown in Supplementary Fig. S1, the RT distributions
were not typically normal but skewed with long tails. The
mean and standard deviation might not be the optimal mea-
sures of the center and dispersion of the RT distributions. To

validate our findings, we also log transformed the original,
untrimmed RTs. The averaged log-transformed RTs across
SOAs for each participant are shown in Supplementary Fig.
S6. The same procedures of data analyses, including outlier
detection and within-participant normalization, were conduct-
ed on the log-transformed RTs. Essentially the same pattern of
results as the pattern for the nontransformed RTs was ob-
served (see Supplementary Figs. S2–S4), demonstrating that
our findings were stable and could not be simply driven by
long, skewed RTs. To simplify the report of results and to
remain constant with the way of data analyses in previous
studies, here in the main text we report only the results based
on the untransformed data. Analyses of log transformed data
are reported in the Supplementary Materials.

Filtering analysis

To confirm the existence of the classic spatial attention effect,
the RT temporal profiles were filtered (MATLAB, EEGLAB
toolbox, two-pass least-squares FIR filtering, 10th-order,) in
each condition by a 0–2 Hz band-pass filter for each partici-
pant. The resulting data were equivalent to behavioral perfor-
mance with sparse SOAs between the cue and the target in
previous studies (Song et al., 2014). To validate the results of
low pass filtering, we also smoothed the RT temporal profiles
in each of the four conditions (high-reward, valid; high-
reward invalid; low-reward, valid; low-reward, invalid) for
each participant, within which 10 adjacent (SOA) data points
were averaged.

A 2 (reward: high vs. low) × 2 (cue validity: valid vs.
invalid) × 46 (SOAs: 200–1,100 ms) repeated-measures of
analysis of variance (ANOVA) was conducted on the normal-
ized RTs obtained after band-pass filtering of 0–2 Hz. Given a
large amount of SOAs and the interaction between cue valid-
ity and SOA (see Results section), the simple cue validity
effects were examined by paired t tests for each point of
SOAs, and the significance was corrected by cluster-based
permutation (Maris & Oostenveld, 2007). Specifically, the
point-to-point threshold was set to p < .05 (two-tailed), and
the continual time points (n > 1) that reached significance
were grouped as a cluster. Within each cluster, the t values
for all time points were summed into a T value of the whole
cluster (Tcluster). Then the time series of the two conditions
were shuffled, and the point-to-point t test was conducted
for the shuffled time series. The summed T value of the big-
gest cluster (Tper) based on each permutation was obtained.
This permutation was repeated 5,000 times, resulting in a set
of Tper values (i.e., Tpers). The cluster-level statistical signifi-
cance was tested by calculating the probability of Tcluster in the
distribution of Tpers. The Tcluster was identified as significant
with a p < .05.
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Time-frequency analysis

The main purpose of our study was to investigate the modu-
latory effect of reward on the rhythmic sampling of spatial
attention. The slow (0–2 Hz) trend signals were subtracted
from the corresponding RT time courses for each condition
to exclude any classic attentional cueing effect. Then the
detrended RT temporal profile for each condition and each
participant was transformed with continuous complex
Gaussian wavelet transforms (MATLAB, wavelet toolbox,
order = 4), with frequency from 1 Hz to 25 Hz in steps of 1
Hz. The RT time-frequency powers were extracted from the
outcome of the wavelet transforms. This time-frequency anal-
ysis was performed for each condition and each participant.
For each participant, the difference of RT power profile be-
tween the valid and invalid conditions in each reward condi-
tion was calculated. The grand mean of time-frequency pow-
ers was averaged across participants.

To assess the statistical significance of the difference
between the power profiles for the valid and invalid condi-
tions, we performed permutation procedure by shuffling the
time course across the two conditions for each participant
and each reward condition. For each shuffling, the time-
frequency analysis procedure was performed on the shuf-
fled signals, in the same way as the procedure performed on
the original signals, and the difference of RT power profiles
between the valid and invalid conditions was recalculated.
The whole procedure was performed 1,000 times, resulting
in a distribution of the valid–invalid power difference at
each time-frequency point, from which the uncorrected p
< .05 threshold was obtained. For multiple comparison cor-
rection, the following two methods were applied to the un-
corrected threshold time-frequency map: within-frequency
correction and between-frequency correction. For with-
frequency correction, the maximum or minimum threshold
values across all time bins were set as the threshold for the
frequency. For between-frequency correction, the maxi-
mum or minimum threshold values across all time bins
and all frequencies were set as the threshold for the whole
map. The same procedure was also performed on the differ-
ence between power profiles in the high-reward and low-
reward conditions.

FFT analysis and cross-correlation analysis

To investigate the periodic nature of the alpha power time
courses (i.e., alpha powers as a function of cue-to-target
SOAs) and how the incentive reward would modulate the
relative alpha power enhancement/inhibition, 8–12 Hz (clas-
sic alpha band) power time-course profiles were extracted
from the output of complex Gaussian wavelet transforms of
the RT temporal profiles for each participant and each condi-
tion and averaged across the frequencies (8–12 Hz). The

ground mean of the alpha power was calculated across partic-
ipants for each condition and was used for FFT analysis
(MATLAB, fft function). The grand mean of the alpha power
difference between the valid and the invalid conditions was
also calculated across participants for each reward condition
and was used for FFT analysis (MATLAB, fft function) and
cross-correlation analysis (MATLAB, xcorr function;
Adhikari, Sigurdsson, Topiwala, & Gordon, 2010; Bolkan
et al., 2017).

FFT analysis

The grand averages of the alpha power for each of the four
conditions (high-reward, valid; high-reward invalid; low-re-
ward, valid; low-reward, invalid), and the alpha power differ-
ence between the valid and the invalid conditions, averaged
across participants for each reward condition, were trans-
formed to frequency domain using fast Fourier transform.
For statistical analysis, the time course of the alpha power
difference was shuffled for 1,000 times for each reward con-
dition. Each shuffled signal was retransformed to frequency
domain, resulting in a distribution of power for each frequency
point from which the p < .05 threshold was obtained. For
multiple-comparison correction across frequencies, the maxi-
mum of the threshold across all frequencies was set as the
corrected threshold.

Cross-correlation analysis

Given that the theta modulations on alpha power were ob-
served in both high-reward and low-reward conditions, the
question then was whether there was a temporal lag or a phase
difference of the modulations between the high-reward and
low-reward conditions. To answer this question, cross-
correlation analysis (MATLAB, xcorr function) was applied
to the grand average of the valid–invalid alpha power differ-
ence time courses between the high-reward and low-reward
conditions across participants. The valid–invalid difference of
alpha power profile in the low-reward condition could show a
largest positive correlation with the alpha power difference in
the high-reward condition after shifting a specific number of
time points (lags). To assess the statistical significance of the
lags, a permutation procedure was performed by shuffling the
time course across the valid and the invalid conditions for each
participant and each reward condition, in the same way as for
the time-frequency analysis. For each shuffling, the time-
frequency analysis and cross-correlation analysis were per-
formed on the shuffled signals. The whole procedure was
performed 1,000 times, resulting in a distribution of correla-
tion values of the valid–invalid difference of alpha power
profile between high-reward and low-reward conditions at
each lag point, fromwhich the p < .05 threshold was obtained.
For multiple-comparison correction, the maximum threshold
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across all time lag points was set as the corrected threshold.
The 95% confidence interval of correlation coefficients was
computed by bootstrapping the alpha power difference in
high-reward and low-reward conditions for 1,000 times.

To measure the variation of the correlation coefficients
across participants, the jackknife method (Miller, 1974) was
used to estimate the standard error of the mean (SEM).

SEMjack ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N−1
N

∑N
i¼1 C−i−c

� �2
r

C-i was the correlation coefficient obtained with cross-
correlation analysis computed from the subsample including all
participants except for participant i. To obtain each C-i, the grand
average of alpha power difference between valid and invalid
conditions was computed for each reward condition, averaging
across all participants except for participant i. Then we applied
cross-correlation analysis to the averaged alpha power differ-
ences. The c was themean of the correlation coefficient obtained
in a subsample.

Phase coherence analysis

To examine whether the lag difference was due to phase differ-
ence, phase coherence analysis was conducted on the low-theta
(2–3 Hz) phase relationship for the alpha power difference time
course (valid vs. invalid) for the high-reward and low-reward
conditions. The time courses of alpha power difference were
transformed using fast Fourier transform (MATLAB, fft func-
tion) for each participant. The low-theta (2–3 Hz) phase differ-
ence between high reward and low reward was then calculated
(CircStat’s toolbox) for each participant. The nonuniformity of
the phase differences was tested using Rayleigh test (CircStat
toolbox; Berens, 2009) across participants. Phase coherence anal-
ysis was also applied to the alpha power time course for each of
the conditions (high-reward, valid; high-reward invalid; low-re-
ward, valid; low-reward, invalid). The 2–3 Hz phase relationship
between the valid and invalid conditions was examined for each
of the reward conditions.

To further validate the results of cross-correlation analysis, we
used time-frequency analysis to show the time course of fluctu-
ated alpha power. The alpha power difference time courses were
transformed using continuous complex Gaussian wavelet trans-
forms (MATLAB, wavelet toolbox, order = 4), with frequency
from 1 to 25Hz in steps of 1Hz. The power profiles as a function
of time and frequency were extracted from the outcome of the
wavelet transforms. The grand average time-frequency power
was calculated across participants for each of the reward condi-
tions. The time-frequency power difference between the high-
reward and low-reward conditions was also calculated. Group-

level permutation test (the number of iterations = 1,000) was
conducted on the time-frequency power difference.

Given the periodically fluctuated alpha power difference, a



pair of phase-power frequency. The observed PPLVwas com-
pared with the distribution of PPLVs under the null hypothesis
by subtracting the mean and divided by the standard deviation.
This created a normalized Z value of PPLV (PPLVz) for each
participant and each pair of frequencies. For group-level sta-
tistical analysis, a one-sample t test was applied for PPLVz >
0. False discovery rate (FDR) correction was applied for mul-
tiple comparisons (Benjamini & Hochberg, 1995).

Results

The overall response accuracy was high, with correct percent-
age mean (± SEM) equaling to 97.27 (± 0.39). Only a small
number of trials (percentage mean ± SEM: high-reward valid,
1.33 ± 0.36; high-reward invalid, 2.26 ± 0.89; low-reward
valid, 1.47 ± 0.40; low-reward invalid, 2.15 ± 0.85) were
discarded as outliers. The distributions of the raw RTs are
shown in Supplemental Fig. S1. Below, we focused on the
analyses of RTs.

Reward modulation on RT time courses at low-
frequency (0–2 Hz)

The 2 × 2 × 46 ANOVA on the low-frequency, 0–2 Hz band-
passed RTs showed amain effect of reward (low-frequency RTs:
high reward, −0.034; low reward, 0.003), F(1, 21) = 10.89, p =
.003, ηp

2 = 0.34, a main effect of SOA, F(45, 945) = 6.98, p <
.001, ηp

2 = 0.250, but no main effect of cue validity (low-fre-
quency RTs: valid, 0.008; invalid, −0.039), F(1, 21) = 4.25, p =
.052, ηp

2 = 0.168. Importantly, the interaction between reward
and cue validity, F(1, 21) = 6.10, p = .022, ηp

2 = 0.225, the
interaction between SOA and reward, F(45, 945) = 1.57, p =
.010, ηp

2 = 0.070, and the interaction between SOA and cue
validity, F(45, 945) = 11.34, p < 0.001, ηp

2 = 0.351, were all
significant. The three-way interaction between cue validity, SOA
and reward did not reach significance, F(45, 945) < 1. The
smoothed (averaging over 10 adjacent SOA data points) data
showed the same pattern as the lowpass (0–2 Hz) filtered data
(the bottom of Fig. 2). We focused on the lowpass (0–2 Hz)
filtered data in the following analyses.

Based on the interaction between cue validity and SOA, fur-
ther analyses showed that responses to the target were faster at
the valid location than at the invalid location (i.e., a facilitatory
effect) when the SOA was 200 ms to 280 ms (paired t test, p <
.05, cluster-based permutation corrected, 5 points, cluster-level p
< .001), whereas responses were clearly slower at the valid loca-
tion than at the invalid location (i.e., an inhibitory of return effect)
when the SOA was 480 ms to 1,080 ms (paired t test, p < .05,
cluster-based permutation corrected, 31 points, cluster-level p <
.001). The pattern of low-frequency RTs replicated the classical
findings of early facilitation and late IOR, repeatedly shown in
previous studies (Klein, 2000; Tipper & Kingstone, 2005).

To investigate how the early facilitation and late IOR were
modulated by reward, we calculated the RT differences between
the invalid and valid conditions, averaging over the short SOAs
(200–280 ms) and the long SOAs (480–1,080 ms). Then, we
conducted a 2 (reward: high vs. low) × 2 (SOA: short vs. long)
ANOVA on the RT differences. Note that we only reported the
interaction and the pattern of the simple effects to avoid circular
analysis of the main effects. The ANOVA showed a significant
interaction between reward and SOA, F(1, 21) = 8.69, p = .008,
ηp

2 = 0.29. Paired t tests on simple effects showed that the RT
differences in the short SOAs (i.e., the early facilitatory effect)
did not differ between high-reward and low-reward conditions,
t(1, 21) = −1.46, p = .166, whereas the RT differences in the long
SOAs (i.e., IOR effect) was larger in the high-reward condition
(0.104) than in the low-reward condition (0.058), t(1, 21) = 2.50,
p = .018. Further analyses showed that for the long SOAs, the
low-pass RTs at the uncued position was shorter in the high-

Fig. 2 Normalized RT time courses (normalized within participants
across all trials) as a function of cue-to-target SOA (n = 22). For easier
illustration, the SOAs are rewritten in seconds. Grand average of RT time
courses for high-reward (top left, mean ± SEM) and low-reward (top right,
mean ± SEM) conditions, grand average of 0–2 Hz low-pass filtered RT
time courses for high-reward (middle left, mean ± SEM) and low-reward
conditions (middle right, mean ± SEM), and grand average of smoothed
RT time course (averaged span: 10 points) for high-reward (bottom left,
mean ± SEM) and low-reward conditions (bottom right, mean ± SEM) are
also presented
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reward condition (−0.106) than in the low-reward condition
(−0.045), t(1, 21) = −4.81, p < .001, while the low-pass RTs at
the cued position was not influenced by the level of reward
(lowpass RTs: high reward, −0.003; low reward, 0.013), t(1,
21) = −0.89, p = .383. The same pattern was observed on the
raw (i.e., unnormalized) RTs (see Table 1).

Periodic alpha power inhibition in the cue-valid con-
dition relative to the cue-invalid condition

After being subtracted (0–2 Hz filtered) the slow-trend signals,
the remaining RT time courses (see Fig. 3a) were analyzed using
time-frequency analysis (see Material and Method section). The
alpha powers for each of the four conditions (i.e., high-reward,
valid; high-reward invalid; low-reward, valid; low-reward, inva-
lid) showed periodically changing patterns (see Fig. 3b; similar
patterns were observed on the raw RTs; see Supplemental Fig.
S4). Further analyses showed that the alpha (8–12 Hz) power for
each of the four conditions fluctuated in a delta/low-theta fre-
quency (2–3 Hz; see Fig. 4, middle, FFT analysis, p < .05 across
frequency corrected). For the low-reward condition, the low-
theta (2–3 Hz) phases of the alpha power between the valid
and invalid conditions showed a fixed relationship (see Fig. 4,
bottom right, Rayleigh test, n = 22, p = .071), with the phase

Table 1 Mean reaction times (ms) and stand deviations across partici-
pants as a function of cue validity and cue-to-target SOAs for the high-
reward and low-reward conditions

High reward Low reward

Valid Invalid Valid Invalid

SOA

Short (200–280 ms) 391 ± 63 404 ± 77 397 ± 69 401 ± 70

Long (480–1,080 ms) 394 ± 78 381 ± 73 397 ± 77 391 ± 75

Fig. 3 Detrended RT time courses and time-frequency power profiles.
Detrended RT time courses and time-frequency power profiles as a func-
tion of SOA (200–1,100 ms) and frequency (1–25 Hz). For easy illustra-
tion, the SOAs are presented in seconds. a Grand average (n = 22) of
detrended RT time courses for high-reward (left) and low-reward (right)

conditions. The shadows denote ±1 SEM. b Grand average of (n = 22)
time-frequency power for valid (left) and invalid (right) conditions when
the spatial cue associated with a high reward (top) or a low reward (bot-
tom). (Color figure online)
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differences (valid vs. invalid) across participants clustered around
a mean of 126°. Such a relationship was not found in the high-
reward condition (see Fig. 4, bottom right, Rayleigh test, n = 22,
p = .401).

For both the high-reward and low-reward conditions, the
power response profiles showed a stronger alpha pattern in the
invalid condition than in the valid condition (permutation test,
corrected p < .05; see Fig. 5a). FFT analysis on the difference of
alpha power between the valid and invalid conditions also
showed significant low-theta (2–3 Hz) band fluctuation in both
the high-reward and low-reward conditions (permutation test,
corrected p < .05; see Fig. 5c). These results suggested that after
attention on the two peripheral boxes had been reset by the cue,

the RT time courses at the cued location underwent pulsed alpha-
band fluctuations relative to those at the uncued location in a
delta/low-theta (2–3 Hz) rhythm for both reward conditions.

We also investigated the time-frequency power difference
between the high-reward and low-reward conditions for the
valid and invalid conditions separately. For the valid condition,
stronger alpha power was observed in the low-reward condition
than the high-reward condition during the short cue-to-target
SOAs (200–300 ms), while stronger theta power was observed
in the high-reward condition than the low-reward condition
during the long cue-to-target SOAs (700–1,100 ms)
(permutation test, corrected p < .05; see Fig. 6, left). For the
invalid condition, stronger alpha power was observed in the

Fig. 4 Spectrum amplitude and 2–3 Hz phase relationship of alpha power
time courses. For easy illustration, the SOAs are presented in seconds.
Top: Alpha power time course. The alpha powers are shown as a function
of cue-to-target SOAs for each condition. The shadows denote ±1 SEM.
Middle: Spectrum amplitudes of alpha power time courses. The spectrum
amplitudes of alpha power time course are shown as a function of fre-
quencies for the high-reward (left) and low-reward (right) conditions,
separately. The dashed lines indicate the statistically significant threshold
(p < .05) based on permutation tests (corrected across frequencies).

Bottom: The 2–3 Hz phase relationship between the valid and invalid
conditions. The 2–3 Hz frequency phase difference of alpha power time
course between the valid and invalid conditions across participants for the
high-reward (left) and low-reward conditions (right) are showed. The
green bars indicate the mean phase difference across participants, and
the length of the green bar indicates the phase difference coherence value
across participants. # indicates a marginal significant effect (p < .10).
(Color figure online)
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low-reward condition than the high-reward condition
(permutation test, corrected p < .05; Fig. 6, right), which
showed a periodically changing pattern.

Periodic alpha pulses emerged earlier under higher
reward

The correlation coefficients of alpha power (valid–invalid) time
courses between the high-reward and low-reward conditions are
shown in Fig. 7a as a function of shifted lags. The results showed
that after approximate 120 ms or 420 ms forward shifting, the
profiles of alpha power (valid–invalid) in the low-reward condi-
tion showed the largest positive correlations with that in the high-
reward condition (permutation test, p < .05, corrected; see Fig.
7a). These results suggested that after forward shifting of 120 ms
or 420 ms, the alpha power profile in the low-reward condition
was most similar to the alpha power profile in the high-reward
condition. Further analysis showed that the significant correlation
after shifting alpha power profiles was not driven by extreme
values from a single participant (jackknife method; see Fig. 7a,
right). This finding suggested that the fluctuating alpha power
pattern emerged 120-ms earlier in the high-reward condition than
that in the low-reward conditions. An alternative explanation is
that the observed pattern was due to a phase difference.

However, the low-theta phase difference between the high-
reward and low-reward conditions was not observed in alpha
power (valid–invalid) time courses (see Fig. 7c, Rayleigh test,
n = 22, p = .365). Furthermore, consistent with the fluctuation of
alpha power (valid–invalid) time courses with a low-theta band
frequency, the correlation coefficients of alpha power (valid–in-
valid) time courses between the high-reward condition and low-
reward condition also showed periodic fluctuation with a low-
theta band frequency (3 Hz, Fig. 7B, FFT analysis, permutation
test, p < .05, cross-frequency corrected).

Results of the time-frequency analysis on the alpha power
profiles (valid–invalid) showed that the alpha fluctuations
manifested with a low-theta frequency (see Fig. 8a). The
low-theta (2–4 Hz) power of alpha power difference between
the valid and invalid conditions was larger in the high-reward
than in the low-reward conditions during the SOA of 200–400
ms, and this pattern was reversed during the SOA of 500–700
ms (see Fig. 8b). These findings suggested that the theta mod-
ulations on the alpha power difference emerged earlier for the
high-reward condition than for the low-reward condition,
which was consistent with the results of cross-correlation
analysis.

To explore the relationship between different frequency
components, power-phase locking analysis was applied to

Fig. 5 Time-frequency power difference and the spectrum of the alpha
power difference between the valid and invalid conditions. For easy
illustration, the SOAs are presented in seconds. a Time-frequency power
difference. Top: Grand average (n = 22) time-frequency maps for valid–
invalid power difference for the high-reward (left) and low-reward (right)
conditions. Bottom: Valid–invalid power difference time-frequencymaps
thresholded by permutation test. *p < .05 (uncorrected). **p < .05 (with-
in-frequency multiple-comparison correction). ***p < .05 (across-fre-
quency multiple-comparison correction). Red represents positive valid–
invalid power difference values; blue represents negative power

difference values. b Time courses of the alpha power difference. Grand
average of the alpha powers difference (n = 22) between the valid and
invalid conditions (averaged between 8 and 12 Hz) as a function of cue-
to-target SOAs. The shadows denote ±1 SEM. c The spectrum of the
alpha power difference. FFT results of the grand average of the alpha
power difference between the valid and invalid conditions for the high-
reward and low-reward conditions. The dashed lines indicate the statisti-
cally significant threshold (p < .05) based on permutation tests (corrected
across frequencies). (Color figure online)
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the RT time courses across both reward and cue validity con-
ditions. Results showed that the alpha power was phase-
locked to the phase of a delta/low theta (1–3 Hz; one-sample
t test, n = 22, FDR corrected; see Fig. 8c). The power-phase
locking relationship showed no significant difference between
the high-reward and low-reward conditions (paired t test, n =
22, FDR corrected).

Discussion

In this study, using the classical spatial cuing paradigm and
with a dense distribution of SOAs between the cue and the
target, we investigated how the rhythmic characteristic of spa-
tial attention is affected by reward. The low-frequency RT
time courses showed the classic pattern of early facilitatory
effect (SOAs: 200–280 ms, RTs: invalid > valid) and late IOR
effect (SOAs: 480–1,080 ms, RTs: valid > invalid) for cue
validity. The early facilitatory effect was not affected by the
level of reward. The IOR effect, however, was enhanced when
the spatial cue was associated with a high reward; this en-
hancement came mainly from the facilitated responses to the
target at the uncued location. After the low-frequency signals
were subtracted, a recurring alpha inhibition was found at the
cued location (relative to the uncued location) in both the
high-reward and low-reward conditions; this alpha inhibition
fluctuated with a frequency of 2–3 Hz. Moreover, the pattern
of the recurring alpha inhibition emerged earlier (~120 ms) in

the high-reward condition than that in the low-reward
condition.

The early facilitation and the late IOR effect shown by the
low-frequency (0–2 Hz) data replicated the classic exogenous
attentional cueing effects (Chen et al., 2010; Klein, 2000;
Posner, 1980; Posner & Cohen, 1984; Tipper & Kingstone,
2005). The low-pass filtering method we used corresponds to
the practice of probing behavioral performance with sparsely
sampled SOAs (Song et al., 2014). The observation that only
responses to the target at the uncued location under long SOAs
were modulated by reward was consistent with recent findings
(Bucker & Theeuwes, 2014; Engelmann & Pessoa, 2007; Lee
& Shomstein, 2013; Shomstein & Johnson, 2013; Small et al.,
2005). Together, these results suggest that the low-frequency
attention sampling at short SOAs is mainly an automatic pro-
cess that is hardly affected by reward whereas the low-
frequency attention sampling at long SOAs is governed by
top-down processes that are susceptible to the influence of
reward (Bucker & Theeuwes, 2014; Corbetta, Kincade,
Ollinger, Mcavoy, & Gordon, 2000; Lee & Shomstein, 2013).

The time-frequency analysis showed lowered alpha power
(i.e., alpha inhibition) at the cued location than at the uncued
location. This alpha inhibition showed a pulse pattern that
fluctuated in 2–3 Hz. The fluctuation of alpha inhibition un-
derlying behavioral attention sampling is consistent with Song
et al. (2014). Importantly, the current study showed that the
fluctuation of alpha inhibition occurs irrespective of the level
of reward indicated by the cue, suggesting a general role of

Fig. 6 Time-frequency power difference between the high-reward and
low-reward conditions. Top: Grand average (n = 22) time-frequency
maps for high versus low power difference in the valid (left) and invalid
(right) conditions. Bottom: High–low power difference time-frequency
maps thresholded by permutation test. *p < .05 (uncorrected). **p < .05

(within-frequency multiple-comparison correction). ***p < .05 (across-
frequency multiple-comparison correction). Red represents positive high
versus low power difference values; blue represents negative power dif-
ference values. (Color figure online)

1532 Atten Percept Psychophys  (2021) 83:1522–1537



pulsed alpha inhibitions in spatial attentional sampling. Many
studies showed that the phase of alpha band activities in the
cortex could predict perceptual performance (Busch et al.,
2009; Dugué et al., 2011; Harris et al., 2018; Jensen et al.,
2014; Sherman et al., 2016). The alpha pulses in the RT time
courses could be underscored by the alpha oscillation in the
cortex and may represent similar cognitive processes reflected
by the alpha band neural activity in the cortex (Song et al.,
2014). As the alpha-band activity has been linked to inhibitory
functions during attentional processes in many studies
(Händel et al., 2011; Helfrich et al., 2017; Kizuk &
Mathewson, 2017; Klimesch et al., 2007; Marshall et al.,
2018; Thut, 2006; van Diepen et al., 2019), here we suggest
that the lower alpha power (alpha inhibition) at the cued loca-
tion than the uncued location represents enhanced attentional
sampling at the cued location. The alpha inhibition that fluc-
tuated in a low-theta frequency may indicate that the

attentional states at the cued location fluctuates in a low-
theta frequency, which is consistent with many psychophysics
studies showing the dominance of theta in the rhythmic nature
of spatial attention (Dugué et al., 2016; Fiebelkorn et al., 2013;
Huang, Chen, & Luo, 2015; Landau & Fries, 2012; Song
et al., 2014). Taken together, these findings suggest that the
rhythmic sampling of spatial attention may be implemented
by the periodically fluctuated (2–3 Hz) alpha inhibition.

One might argue that the rhythmic behavioral performance
observed here was due to microsaccades, the small involun-
tary fixational eye movements that have been linked
to theta-band neural activities during visual perception
(Bosman, Womelsdorf, Desimone, & Fries, 2009; Chen,
Ignashchenkova, Thier, & Hafed, 2015). However, using par-
adigms similar to the present one, recent studies showed that
the link between neural oscillations and behavioral perfor-
mance persists even after the removal of trials with

Fig. 7 Results of correlation coefficients. a Correlation coefficients with
different shifted lags. Correlation coefficients of alpha power profiles
(valid–invalid) as a function of shifted lags between the high-reward
and low-reward conditions are shown. For easy illustration, the shifted
lags are presented in seconds. Left: Correlation coefficients for the grand
average of alpha power difference (n = 22); the gray horizontal dotted line
shows the critical correlation coefficient corresponding to the corrected p
= .05 (permutation test); the shadows denote 95% confidence interval
estimated with bootstrapping method. Right: Correlation coefficients es-
timated with the jackknife method; the shaded area represents ±1 SEM. b
Spectrum amplitude of correlation coefficients. Spectrum amplitude of

the correlation coefficients is shown as a function of shifted lags (sec-
onds). The black dashed lines indicate the statistically significant thresh-
old (p < .05) for the permutation test; the red dashed line indicates the
corrected threshold across frequencies. c The 2–3 Hz phase relationship
of the alpha power difference. The 2–3 Hz frequency phase difference
(high reward vs. low reward) distribution of alpha power (valid–invalid)
profiles are shown across participants. The green bars indicate the mean
phase difference across participants, and the length of the green bar indi-
cates the phase difference coherence value across participants. (Color
figure online)
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microsaccades during the cue–target delay (Fiebelkorn et al.,
2018; Landau, Schreyer, Van Pelt, & Fries, 2015;
Spyropoulos et al., 2018), indicating that the periodically fluc-
tuated (2–3 Hz) alpha inhibitions in the RT time courses can-
not be simply due to microsaccades.

The most important finding in the current study is that
the rhythmic alpha inhibition in the high-reward condition
emerges earlier (~120 ms) than the rhythmic alpha inhi-
bition in the low-reward condition, as shown by the cross-
correlation analysis. One might argue that this result sim-
ply reflects a difference in phase rather than a difference
in the onset of the rhythmic alpha inhibition. To test this
hypothesis, we conducted phase coherence analysis on the
phase difference of the alpha power (valid–invalid) pro-
files between the high-reward and low-reward conditions.
The results showed no phase difference between the two
conditions in the low-theta band. Moreover, we also ap-
plied time-frequency analysis to the alpha power differ-
ence between valid and invalid conditions for each of the
reward conditions. Results showed that the stronger low-
theta modulation in the high-reward condition than in the
low-reward condition occurred in an early time window
(i.e., 200–400-ms SOA). Based on these analyses, we
conclude that the critical finding of the cross-correlation

was not caused by phase difference, but by onset differ-
ence; the fluctuated alpha power emerged earlier in the
high-reward condition than that in the low-reward
condition.

Power-phase locking analysis showed that across all
conditions (cue validity and level of reward), the alpha
(8–12 Hz) power in the time course of RTs was signifi-
cantly locked to the low-theta (1–3 Hz) phase, implying
that the alpha power was modulated by the theta phase or
vice versa. Considering that the oscillation components in
behavioral performance are probably underlain by the os-
cillation of neural activity in the same frequency (Harris
et al., 2018; Landau et al., 2015; Slagter, Lutz, Greischar,
Nieuwenhuis, & Davidson, 2009), the current results are
consistent with previous electrophysiological studies
(Fiebelkorn et al., 2018; Helfrich et al., 2018) showing that
the rhythmically alternating attention state is reflected by
alpha power (i.e., the high attentional state is reflected by
an alpha inhibition) and modulated by theta phase (i.e., a
high attentional state is shown in a proper theta phase and a
low attentional state is shown in the opposite phase) in the
frontoparietal areas. Previous studies have shown that the
theta and alpha components in the frontoparietal areas
could be modulated by reward (Crowley et al., 2014;

Fig. 8 a Grand average (n = 22) of time-frequency power for valid–
invalid alpha power time courses. For illustration, the SOAs are presented
in seconds. Left: Grand average power for high-reward conditions. Right:
Grand average power for low-reward conditions. The alpha power pattern
emerged earlier with a high-reward condition than with a low-reward
condition. b Time-frequency power difference (n = 22) of alpha power
profiles between the high-reward and low-reward conditions. Left: Grand
average power difference between high-reward and low-reward condi-
tions. Right: Grand average power difference between high-reward and

low-reward conditions thresholded by permutation test. *p < .001 (uncor-
rected). **p < .001 (within-frequency multiple-comparison correction).
***p < .001 (cross-frequency multiple-comparison correction). c Alpha
power (8–12 Hz) and low-theta (1–3 Hz) relationship. Grand mean of
cross-frequency power-phase locking value (n = 22) is shown. Dotted line
indicates the frequencies showed significant power-phase locking; one-
sample t test, FDR corrected p < .05. (Color figure online)
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Kamarajan et al., 2008; Shankman, Sarapas, & Klein,
2011; Wang et al., 2019; Yang, Jacobson, & Burwell,
2017). We propose that as the time-spectral pattern (alpha
pulses modulated by theta phase) in our behavioral data is
likely underlain by the neural oscillation in the frontoparietal
area, and the modulatory effect of reward on the rhythmic
characteristics of spatial attention is also underlain by the
modulation of reward on the frontoparietal oscillation
network.

It has been consistently shown that reward can affect atten-
tional processes (Anderson, 2015; Anderson et al., 2011;
Anderson et al., 2016; Anderson, Laurent, & Yantis, 2014;
Wang et al., 2015; Wang, Duan, Theeuwes, & Zhou, 2014).
In an extension, we showed that, at the low-frequency band,
reward facilitated the attentional orienting to novel locations at
long SOAs, and beyond low-frequency band, reward led to
shorter latency of theta-modulated alpha in attentional sam-
pling. Both of these processes are governed by top-down con-
trol, which is supported by neural oscillations. Previous stud-
ies have shown that neural oscillations in the frontoparietal
cortex could be modulated by top-down processing (Helfrich
et al., 2017; Phillips, Vinck, Everling, & Womelsdorf, 2014).
Electroencephalogram studies showed that the temporal pre-
dictions of a stimulus could bias the phase of alpha band
activity toward the optimal phase for visual processing
(Samaha, Bauer, Cimaroli, & Postle, 2015), and the alpha
activity modulated by prediction is dominated by the phase
of frontal low-theta activity (Helfrich et al., 2017). The atten-
tional processing reflected by lower alpha power in the
posterior-occipital cortex is modulated by reward (Marshall
et al., 2018). Moreover, it is generally believed that the
theta-band neural oscillations in the middle frontal cortex are
related to cognitive control (Cavanagh & Frank, 2014).
Recent studies have shown that the frontal theta oscillations
are modulated by reward (Kang, Chang,Wang, Wei, & Zhou,
2018; Wang et al., 2019). Taken together, these findings sug-
gest that reward might act to motivate the cognitive control
that is supported by theta activities in the frontal cortex, which
in turn modulate the attentional processes that are supported
by alpha activities in the posterior-occipital cortex. Indeed, we
can speculate that the reward-predictive cue resets the frontal
(FEF) theta phase to the optimal phase for visual processing
immediately after the cue onset, which in turn reduces the
alpha power in the parietal-occipital cortex. Relative to a
low-reward cue, the high-reward cue facilitates phase reset-
ting, although how the reward system (i.e., mesolimbic dopa-
minergic circuits) interacts with the frontal-parietal network to
modulate the periodical sampling of the environment is an
important issue for future research.

In summary, using a time-resolved measurement, the cur-
rent study reveals that different frequency components of the
RT time courses in spatial attention are modulated by reward
in different ways. In the low-frequency band, reward

facilitates the response to a target at the uncued location, but
only at long SOAs. Beyond the low-frequency band, alpha
inhibition that fluctuates in a low-theta frequency is observ-
able at the cued location relative to the uncued location,
reflecting the rhythmic characteristic of spatial attention.
Importantly, this rhythmic alpha inhibition emerges earlier
when the spatial cue is associated with a high reward than
when the cue is associated with a low reward. These findings
suggest that the rhythmic sampling of spatial attention is a
general phenomenon but the onset of its occurrence could be
modulated by reward.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.3758/s13414-020-02226-5.

Acknowledgement We thank Drs. Huan Luo, Jianrong Jia, and Huihui
Zhang for technical consultation and three anonymous reviewers for con-
structive suggestions. This work was supported by the National Natural
Science Foundation of China (Grant No. 31861133012). Data analyses
were supported by High-Performance Computing Platform of Peking
University.

Open practices statement The data, code and materials are available at
https://osf.io/4d8st/.

References

Adhikari, A., Sigurdsson, T., Topiwala, M. A., & Gordon, J. A. (2010).
Cross-correlation of instantaneous amplitudes of field potential os-
cillations: A straightforward method to estimate the directionality
and lag between brain areas. Journal of Neuroscience Methods,
191(2), 191–200. https://doi.org/10.1016/j.jneumeth.2010.06.019

Anderson, B. A. (2015). Value-driven attentional capture is modulated by
spatial context. Visual Cognition, 23(1–2), 67–81. https://doi.org/
10.1080/13506285.2014.956851

Anderson, B. A., Kuwabara, H., Wong, D. F., Frolov, B., Courtney, M.,
&Yantis, S. (2016). The role of dopamine in value-based attentional
orienting. Current Biology, 26, 550–555. https://doi.org/10.1016/j.
cub.2015.12.062

Anderson, B. A., Laurent, P. A., & Yantis, S. (2011). Value-driven atten-
tional capture. Proceedings of the National Academy of Sciences,
108(25), 10367–10371. doi:https://doi.org/10.1073/pnas.
1104047108

Anderson, B. A., Laurent, P. A., & Yantis, S. (2014). Value-driven atten-
tional priority signals in human basal ganglia and visual cortex.
Brain Research, 1587, 88–96. https://doi.org/10.1016/j.brainres.
2014.08.062

Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus
bottom-up attentional control: A failed theoretical dichotomy.
Trends in Cognitive Sciences, 16(8), 437–443. https://doi.org/10.
1016/j.tics.2012.06.010

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery
rate: A practical and powerful approach to multiple testing. Journal
of the Royal Statistical Society, Series B, 57(1), 289–300.

Berens, P. (2009). CircStat: A MATLAB toolbox for circular statistics.
Journal of Statistical Software, 31(10). https://doi.org/10.18637/jss.
v031.i10

Bolkan, S. S., Stujenske, J. M., Parnaudeau, S., Spellman, T. J.,
Rauffenbart, C., Abbas, A. I., . . . Kellendonk, C. (2017).

https://doi.org/10.3758/s13414-020-02226-5
https://osf.io/4d8st/
https://doi.org/10.1016/j.jneumeth.2010.06.019
https://doi.org/10.1080/13506285.2014.956851
https://doi.org/10.1080/13506285.2014.956851
https://doi.org/10.1016/j.cub.2015.12.062
https://doi.org/10.1016/j.cub.2015.12.062
https://doi.org/10.1073/pnas.1104047108
https://doi.org/10.1073/pnas.1104047108
https://doi.org/10.1016/j.brainres.2014.08.062
https://doi.org/10.1016/j.brainres.2014.08.062
https://doi.org/10.1016/j.tics.2012.06.010
https://doi.org/10.1016/j.tics.2012.06.010
https://doi.org/10.18637/jss.v031.i10
https://doi.org/10.18637/jss.v031.i10


memory maintenance. Nature Neuroscience, 20(7), 987–996.
https://doi.org/10.1038/nn.4568

Bosman, C. A., Womelsdorf, T., Desimone, R., & Fries, P. (2009). A
microsaccadic rhythm modulates gamma-band synchronization and
behavior. Journal of Neuroscience, 29(30), 9471–9480. https://doi.
org/10.1523/JNEUROSCI.1193-09.2009

Bucker, B., & Theeuwes, J. (2014). The effect of reward on orienting and
reorienting in exogenous cuing. Cognitive, Affective, & Behavioral
Neuroscience, 14(2), 635–646. https://doi.org/10.3758/s13415-014-
0278-7

Busch, N. A., Dubois, J., & Vanrullen, R. (2009). The phase of ongoing
EEG oscillations predicts vsual perception. The Journal of
Neuroscience, 29(24), 7869–7876. https://doi.org/10.1523/
JNEUROSCI.0113-09.2009

Canolty, R. T., Edwards, E., Dalal, S. S., Soltani, M., Nagarajan, S. S.,
Berger,M. S.,…Knight, R. T. (2006). High gamma power is phase-
locked to theta oscillations in human neocortex. Science, 313(5793),
1626–1628. https://doi.org/10.1126/science.1128115

Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for
cognitive control. Trends in Cognitive Sciences, 18(8), 414–421.
https://doi.org/10.1016/j.tics.2014.04.012

Chelazzi, L., Perlato, A., Santandrea, E., & Della Libera, C. (2013).
Rewards teach visual selective attention. Vision Research, 85, 58–
72. https://doi.org/10.1016/j.visres.2012.12.005

Chen, C. Y., Ignashchenkova, A., Thier, P., & Hafed, Z. M. (2015).
Neuronal response gain enhancement prior to microsaccades.
Current Biology, 25(16), 2065–2074. https://doi.org/10.1016/j.cub.
2015.06.022

Chen, Q., Fuentes, L. J., & Zhou, X. (2010). Biasing the organism for
novelty: A pervasive property of the attention system. Human Brain
Mapping, 31(8), 1141–1156. https://doi.org/10.1002/hbm.20924

Cohen, M. X. (2014). Analyzing neural time series data: Theory and
practice. Cambridge: MIT Press.

Corbetta, M., Kincade, J. M., Ollinger, J. M., Mcavoy, M. P., & Gordon,
S. L. (2000). Voluntary orienting is dissociated from target detection
in human posterior parietal cortex. Nature Neuroscience, 3(3), 292–
29

https://doi.org/10.1038/nn.4568
https://doi.org/10.1523/JNEUROSCI.1193-09.2009
https://doi.org/10.1523/JNEUROSCI.1193-09.2009
https://doi.org/10.3758/s13415-014-0278-7
https://doi.org/10.3758/s13415-014-0278-7
https://doi.org/10.1523/JNEUROSCI.0113-09.2009
https://doi.org/10.1523/JNEUROSCI.0113-09.2009
https://doi.org/10.1126/science.1128115
https://doi.org/10.1016/j.tics.2014.04.012
https://doi.org/10.1016/j.visres.2012.12.005
https://doi.org/10.1016/j.cub.2015.06.022
https://doi.org/10.1016/j.cub.2015.06.022
https://doi.org/10.1002/hbm.20924
https://doi.org/10.1038/73009
https://doi.org/10.1016/j.bandc.2013.11.011
https://doi.org/10.1016/j.bandc.2013.11.011
https://doi.org/10.1523/JNEUROSCI.1161-11.2011
https://doi.org/10.1016/j.cub.2016.04.046
https://doi.org/10.1016/j.cub.2016.04.046
https://doi.org/10.1037/1528-3542.7.3.668
https://doi.org/10.1037/1528-3542.7.3.668
https://doi.org/10.3758/s13414-017-1376-8
https://doi.org/10.3758/s13414-017-1376-8
https://doi.org/10.1523/JNEUROSCI.1338-11.2011
https://doi.org/10.1016/j.tics.2018.11.009
https://doi.org/10.1016/j.tics.2018.11.009
https://doi.org/10.1016/j.neuron.2018.07.038
https://doi.org/10.1016/j.neuron.2018.07.038
https://doi.org/10.1038/s41467-018-08151-4
https://doi.org/10.1016/j.cub.2013.10.063
https://doi.org/10.1016/j.cub.2013.10.063
https://doi.org/10.1162/jocn.2010.21557
https://doi.org/10.1162/jocn.2010.21557
https://doi.org/10.1016/j.cub.2013.09.020
https://doi.org/10.1523/JNEUROSCI.3006-17.2018
https://doi.org/10.1523/JNEUROSCI.3006-17.2018
https://doi.org/10.1016/j.neuron.2018.07.032
https://doi.org/10.1016/j.neuron.2018.07.032
https://doi.org/10.1073/pnas.1705965114
https://doi.org/10.1016/j.tics.2016.09.007
https://doi.org/10.1523/JNEUROSCI.4294-14.2015
https://doi.org/10.1016/j.tins.2014.04.001
https://doi.org/10.1016/j.brainres.2008.06.051
https://doi.org/10.1016/j.brainres.2008.06.051
https://doi.org/10.1111/psyp.13214
https://doi.org/10.1016/j.cub.2018.05.086
https://doi.org/10.1162/jocn
https://doi.org/10.4249/scholarpedia.3650
https://doi.org/10.1016/j.brainresrev.2006.06.003


Landau, A. N., & Fries, P. (2012). Attention samples stimuli rhythmical-
ly. Current Biology, 22(11), 1000–1004. https://doi.org/10.1016/j.
cub.2012.03.054

Landau, A. N., Schreyer, H. M., Van Pelt, S., & Fries, P. (2015).
Distributed attention is implemented through theta-rhythmic gamma
modulation. Current Biology, 25(17), 2332–2337. https://doi.org/
10.1016/j.cub.2015.07.048

Lee, J., & Shomstein, S. (2013). The differential effects of reward on
space- and object-based attentional allocation. Journal of
Neuroscience, 33(26), 10625–10633. https://doi.org/10.1523/
JNEUROSCI.5575-12.2013

Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of
EEG- and MEG-data. Journal of Neuroscience Methods, 164(1),
177–190. https://doi.org/10.1016/j.jneumeth.2007.03.024

Marshall, T. R., den Boer, S., Cools, R., Jensen, O., Fallon, S. J., &
Zumer, J. M. (2018). Occipital alpha and gamma oscillations sup-
port complementary mechanisms for processing stimulus value as-
sociations. Journal of Cognitive Neuroscience, 30(1), 119–129.
https://doi.org/10.1162/jocn_a_01185

Miller, R. G. (1974). The jackknife—A review. Biometrika, 61(1), 1–15.
https://doi.org/10.1093/biomet/61.1.1

Phillips, J. M., Vinck, M., Everling, S., & Womelsdorf, T. (2014). A
long-range fronto-parietal 5- to 10-Hz network predicts “top-down”
controlled guidance in a task-switch paradigm. Cerebral Cortex,
24(8), 1996–2008. https://doi.org/10.1093/cercor/bht050

Posner, M. (1980). Orienting of attention. Quarterly Journal of
Experimental Psychology, 32(1), 3–25. https://doi.org/10.1080/
00335558008248231

Posner, M., & Cohen, Y. (1984). Components of visual orienting.
Attention and Performance, 32, 531–556.

Samaha, J., Bauer, P., Cimaroli, S., & Postle, B. R. (2015). Top-down
control of the phase of alpha-band oscillations as a mechanism for
temporal prediction. Proceedings of the National Academy of
Sciences of the United States of America, 112(27), 8439–8444.
https://doi.org/10.1073/pnas.1520473112

Shankman, S. A., Sarapas, C., & Klein, D. N. (2011). The effect of pre-
vs. post-reward attainment on EEG asymmetry in melancholic de-
pression. International Journal of Psychophysiology, 79(2), 287–
295. https://doi.org/10.1016/j.ijpsycho.2010.11.004

Sherman, M. T., Kanai, R., Seth, A. K., & Vanrullen, R. (2016).
Rhythmic influence of top-down perceptual priors in the phase of
prestimulus occipital alpha oscillations. Jounal of Cognitive
Neuroscience, 28(9), 1318–1330. https://doi.org/10.1162/jocn_a_
00973

Shomstein, S., & Johnson, J. (2013). Shaping attention with reward:
Effects of reward on space- and object-based selection.
Psychological Science, 24(12), 2369–2378. https://doi.org/10.
1177/0956797613490743

Slagter, H. A., Lutz, A., Greischar, L. L., Nieuwenhuis, S., & Davidson,
R. J. (2009). Theta phase synchrony and conscious target percep-
tion: Impact of intensive mental training. Journal of Cognitive
Neuroscience, 21(8), 1536–1549. https://doi.org/10.1162/jocn.
2009.21125

Small, D. M., Gitelman, D., Simmons, K., Bloise, S. M., Parrish, T., &
Mesulam,M.M. (2005).Monetary incentives enhance processing in
brain regions mediating top-down control of attention. Cerebral
Cortex, 15(12), 1855–1865.

https://doi.org/10.1016/j.cub.2012.03.054
https://doi.org/10.1016/j.cub.2012.03.054
https://doi.org/10.1016/j.cub.2015.07.048
https://doi.org/10.1016/j.cub.2015.07.048
https://doi.org/10.1523/JNEUROSCI.5575-12.2013
https://doi.org/10.1523/JNEUROSCI.5575-12.2013
https://doi.org/10.1016/j.jneumeth.2007.03.024
https://doi.org/10.1162/jocn_a_01185
https://doi.org/10.1093/biomet/61.1.1
https://doi.org/10.1093/cercor/bht050
https://doi.org/10.1080/00335558008248231
https://doi.org/10.1080/00335558008248231
https://doi.org/10.1073/pnas.1520473112
https://doi.org/10.1016/j.ijpsycho.2010.11.004
https://doi.org/10.1162/jocn_a_00973
https://doi.org/10.1162/jocn_a_00973
https://doi.org/10.1177/0956797613490743
https://doi.org/10.1177/0956797613490743
https://doi.org/10.1162/jocn.2009.21125
https://doi.org/10.1162/jocn.2009.21125
https://doi.org/10.1093/cercor/bhi063
https://doi.org/10.1523/JNEUROSCI.4856-13.2014
https://doi.org/10.1523/JNEUROSCI.4856-13.2014
https://doi.org/10.1073/pnas.1719433115
https://doi.org/10.1073/pnas.1719433115
https://doi.org/10.1073/pnas.1517519112
https://doi.org/10.1073/pnas.1517519112
https://doi.org/10.1523/JNEUROSCI.0875-06.2006
https://doi.org/10.1016/j.cognition.2005.02.003
https://doi.org/10.1016/j.cognition.2005.02.003
https://doi.org/10.1016/J.COPSYC.2019.03.015
https://doi.org/10.1016/j.tics.2016.07.006
https://doi.org/10.3389/fpsyg.2011.00060
https://doi.org/10.3389/fpsyg.2011.00060
https://doi.org/10.1093/cercor/bhy275
https://doi.org/10.1093/cercor/bhy275
https://doi.org/10.1167/14.12.2.doi
https://doi.org/10.1002/hbm.23004
https://doi.org/10.1002/hbm.23004
https://doi.org/10.1167/13.3.5
https://doi.org/10.1523/JNEUROSCI.20-06-j0002.2000
https://doi.org/10.1002/hipo.22691
https://doi.org/10.1002/hipo.22691

	Reward makes the rhythmic sampling of spatial attention emerge earlier
	Abstract
	Introduction
	Material and method
	Participants
	Design and procedure
	Data analyses
	Filtering analysis
	Time-frequency analysis
	FFT analysis and cross-correlation analysis
	FFT analysis
	Cross-correlation analysis
	Phase coherence analysis
	Power-phase locking analysis


	Results
	Reward modulation on RT time courses at low-frequency (0–2 Hz)
	Periodic alpha power inhibition in the cue-valid condition relative to the cue-invalid condition
	Periodic alpha pulses emerged earlier under higher reward

	Discussion
	References




