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Competing rhythmic neural representations of
orientations during concurrent attention to multiple
orientation features
Ce Mo1,2,3,4,5, Junshi Lu2,3, Bichan Wu2,3, Jianrong Jia2,3,4, Huan Luo 2,3* & Fang Fang 2,3,4*

When a feature is attended, all locations containing this feature are enhanced throughout the

visual field. However, how the brain concurrently attends to multiple features remains

unknown and cannot be easily deduced from classical attention theories. Here, we recorded

human magnetoencephalography signals when subjects concurrently attended to two spa-

tially overlapping orientations. A time-resolved multivariate inverted encoding model was

employed to track the ongoing temporal courses of the neural representations of the

attended orientations. We show that the two orientation representations alternate with each

other and undergo a theta-band (~4 Hz) rhythmic fluctuation over time. Similar temporal

profiles are also revealed in the orientation discrimination performance. Computational

modeling2
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time period exhibited a flat profile (F(5,84)= 0.26, p= 0.93,
Supplementary Fig. 2a) with little representation of orientation
information. Second, to investigate how the selection of the
optimal orientation pattern by the SVM classifier might affect
the outcome, we selected the surrogate optimal pattern as the
instantaneous trial-wise vectors of sensor signals at the time point
of the highest SVM decoding performance in the pre-stimulus
period (baseline data), and performed the same IEM analysis. If
our findings were somehow contingent on our approach of
determining the optimal orientation pattern, rather than the
orientation information itself, then one might expect a similar
bell-shaped profile in the channel response function obtained
from the surrogate optimal pattern. However, we did not observe
such a profile in the channel response function for the post-
stimulus period (F(5,84)= 0.59, p= 0.71, Supplementary Fig. 2b).

Together, these results suggest that our findings are unlikely to
arise by chance and could not be explained by the approach of
selecting the optimal orientation pattern.

Neural representation of multiple attended orientations. Hav-
ing validated the trained IEM based on the model training part
data, we then used the IEM to reconstruct the time courses of
orientation representations in the attention part when subjects
concurrently attended to two orientation features (green box,
Fig. 2a). In the attention part, subjects were presented with a
multitude of sinusoidal gratings dispersed randomly. Half of the
gratings were oriented at 45° while the others were oriented at
135°. An abrupt contrast increase with all the gratings of one
orientation was introduced in each trial to presumably reset the
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attentional process13,25. So that we could examine the moment-
by-moment neural representations of the orientation features
with reference to a common temporal marker. Subjects were
required to report a near-threshold orientation change (i.e.,
clockwise or anticlockwise) in the upcoming probe with respect to
its closest orientation in the initial stimulus (Fig. 2a).

First, we examined whether the reconstruction results con-
tained the information about the two attended orientations (45°

and 135°
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rhythmic fluctuating pattern. Moreover, the two orientation
representations seemed to exhibit an alternating relationship such
that the peaks of one coincided with the troughs of the other, and
vice versa. Indeed, this time-resolved pattern was consistent with
the flat time-averaged result (Fig. 2b). To examine the spectral
contents of the orientation representation time courses, we per-
formed a spectral analysis on the orientation representation
fidelity time courses averaged across trials for each subject. The
amplitude spectra were then averaged across subjects for each of
the two orientations. As shown in Fig. 2d, both orientations
showed a significant peak in the theta band (permutation test,
corrected for multiple comparisons, p < 0.05; 45°: 3.75–4 Hz;
135°: 3.5–4 Hz). Thus, the temporal fluctuations of the two
orientation representations were not stochastic but displayed a
theta-band rhythmical pattern.

To further test the alternating relationship between the time
courses of the two orientation representations, we calculated their
phase difference in the theta-band for each subject. As shown
Fig. 2e, the 45°–135° phase difference was not uniformly
distributed across subjects, but was clustered around 164°
(Rayleigh test for uniformity, p < 0.001) that was significantly
different from 0° (Rayleigh test, p < 0.001) but not significantly
different from 180° (Rayleigh test, p= 0.16), supporting their
anti-phase relationship in the theta band. Therefore, the neural
representations of the two concurrently attended orientations
followed a rhythmically oscillating trajectory in which the
enhancement of one feature representation was accompanied by
the suppression of the other.

Behavioral oscillation in multi-orientation attention. Previous
studies, by employing a time-resolved behavioral approach, have
demonstrated neurophysiologically relevant rhythms in
behavior10,11,13,14. If multi-feature attention is indeed mediated
by a rhythmic sampling neural mechanism, as suggested by our
MEG results, we would expect a similar rhythmic profile in the
time-resolved behavioral performance using the same multi-
feature attention paradigm. We therefore employed the same
stimuli and experimental procedure as those in the attention part
of the MEG experiment, in combination with time-resolved
psychophysics, to assess the temporal dynamics of multi-feature
attentional process at the behavioral level. The only modification
was the introduction of a systematically varied temporal lag
between the cue and the probe (SOA), such that the probe
appeared at one of 50 SOAs (50–1050 ms in steps of 20 ms) with
equal probability.

Figure 2f illustrates the orientation discrimination accuracy as
a function of cue-to-probe SOA for the 45° (red) and the 135°
(blue) orientations, respectively. The behavioral results showed a
fluctuating temporal profile as well as an alternation between the
two orientations. We then applied the same statistical procedure
as that used for the MEG data to the time-resolved behavioral
data, and identified a significant theta-band spectral peak
(permutation test, corrected for multiple comparisons; 45°:
3.75–4.5 Hz, p < 0.025; 135°: 3.75–4.25 Hz, p < 0.025) for both
orientations (Fig. 2g). Moreover, sensitivity to the two orientation
features exhibited an anti-phase relationship in the theta band
(Rayleigh test for uniformity,

orientations (Fig.
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(i.e., ~4 Hz), thus suggesting similar mechanisms mediating the
two attention forms.

Our findings, from both MEG recording and behavioral mea-
surement, consistently show that attention to multiple features is
coordinated at a theta-band rhythm, a rhythm known to implement
attentional allocation among multiple locations11,13,14,25,34,35. In
addition to attention, theta-band rhythm is also known to be
involved in other cognitive functions that deal with multiple items
simultaneously. For example, it was found that sustained theta-band
power during the delay period in working memory tasks36 could
predict subsequent retrieval performance37. By phase-modulating
the gamma-band power, the theta-band rhythm served a critical
function in disambiguating individual items held in working
memory38 and encoding their relationships39. Therefore, theta-
band rhythm might act as a functional bridge that connects a
cascade of cognitive processes40, including information selection,
representation, storage, and readout, with external behaviors.
Functionally, this ubiquitous temporal code is utilized to facilitate
the information exchange and coordination between different brain
regions that are involved in these cognitive processes41, and helps to
enhance processing capacity in attention and memory42,43.

Previous studies have shown that when a single feature is atten-
ded, tuning curves of individual neurons were shifted towards the
attended feature8,26, thus consistent with the TS model. Interest-
ingly, our modeling results instead support the TC model over the
TS model. One possible explanation is that the two mechanisms are
optimal under different circumstances. Tuning shift could maximize
the sensitivity to the attended feature4 during uni-feature attention
but would be suboptimal for multi-feature attention because it
would be highly inefficient to shift the tunings of almost all neuronal
populations every hundreds of milliseconds. In contrast, tuning
competition would be more advantageous in implementing the
rhythmic sampling process, as it relies on concurrent tuning changes
of particular neuronal populations without necessarily involving
other neuronal populations44. Importantly, we identified rhythmic
sharpening and widening of the tuning curves in our modeling at
the same theta-band frequency as in the temporal dynamics of the
feature representation and behavioral performance. This observation
echoes previous findings of attention-induced selectivity increase in
visual cortical neurons representing the attended object45 or lower-
level features46. Feature information encoded in neuronal responses
is critically constrained by the slope of neuronal tuning curves.
Sharpening of a tuning curve increases its slope, which in turn
improves the quality of neuronal code and the behavioral dis-
crimination performance47. While our modeling results were con-
sistent with previous findings that directing attention to basic visual
features, such as color and motion, influences the selectivity of
individual neurons48–51, given the limited spatial resolution of MEG
technique, we cannot assert that the tuning competition occurs at
the single-neuron level. It could also occur at the population
response level. In fact, tuning width changes at the population level
do not necessarily arise from tuning width (or selectivity) changes at
the single-neuron level, since a population tuning curve could be
affected by changes in amplitudes (or gains) of individual neuronal
tuning curves without necessarily changing the shapes (or widths) of
the tuning curves49.

Although our results are based on neuromagnetic signals from
occipital sensors, it is unlikely that our findings only reflect localized
neuronal processing in visual cortex. Feature-based attention is
known to recruit a large-scale network of brain regions, including
V4, frontal eye field (FEF) and ventral prearcuate gyrus (VPA)3,52.
In specific, it was found that feature-based attention signals arise
earlier in VPA than V4, suggesting that the source of feature
selection signals might be located outside the visual system3. Hence,
the rhythmic attentional sampling in the feature space might reflect
a dynamic interplay between occipital cortex and higher-order

attention-related regions34,35. In different phases of a theta-band
cycle, top-down signals bias the local competition between feature-
selective neurons in visual cortex towards one feature over the
other. Consequently, local neuronal computations are temporally
orchestrated by higher-order regions, achieving a time-multiplexing
representation.

It has recently been proposed that IEM outputs could not be
used to infer changes in tuning properties at the single-neuron
level, as the IEM outputs were only determined up to a linear
transform and thus the recovered model responses are only one
of an infinite family of equivalent solutions53. However, we
believe that these arguments do not speak against the validity of
our approach or our findings. While the IEM approach might not
be able to provide insights into the tuning properties at the single-
neuron level, it does provide an effective way to assay neural
representations at the neuronal population level54, which enabled
us to reveal the rhythmic changes in orientation representations
in theta-band. It should be emphasized that here we did not seek
to establish a direct link between single-neuron level tuning and
population-level representation based on our current findings,
though this issue should be investigated in the future.

In summary, we found, for the first time, that multi-feature
attention is mediated by a rhythm-based, time-multiplexing
neural machinery that sampled each attended feature periodically
at theta band. Moreover, the rhythmicity might be implemented
by a tuning competition process between the neuronal popula-
tions selective to the attended features.

Methods
Participants. A total of 30 students (13 males, 18–25 years old) were recruited
from Peking University. Fifteen of them (7 males) participated in the MEG
experiment and the rest participated in the behavioral experiment. All subjects
were naive to the purpose of the study. They were right-handed, reported normal
or corrected-to-normal vision, and had no known neurological or visual disorders.
Written informed consents were collected from them before the experiments.
Experimental procedures were approved by the human subject review committee at
Peking University.

Stimuli and task. The MEG experiment had two parts—the model training part and
the attention part. In the model training part, the visual stimulus was an annulus of
sinusoidal grating (inner radius= 1.5°, outer radius= 12°, spatial frequency= 0.225
cycles per degree, Michelson contrast= 1, mean luminance= 80 cd/m2) centered at
fixation. Its phase was randomized and its orientation could be one of six possible
orientations from 15° to 165° in steps of 30°. In each trial, the grating stimulus was
displayed for 1000–1250ms, and was then slightly rotated for 150ms. Subjects
indicated the direction of the rotation (clockwise or counterclockwise) (Fig. 1a).

In the attention part, the stimulus consisted of two arrays of phase-randomized
sinusoidal gratings (radius= 0.3°, spatial frequency= 3.8 cycles per degree,
Michelson contrast= 0.8) oriented at ~45° and ~135°, which were presented in an
invisible 9 × 9 rectangular grid centered at fixation. Gratings in the same array
shared identical orientation. The size of the grid was 12° × 12°. Spatial
randomization of the gratings proceeded in two steps. In the first step, 28 grid cells
were randomly selected as the candidate locations for the gratings. In the second
step, the location of each grating center was further jittered within the grid cell. The
aim of the two-step manipulation was to conceal the spatial configuration of the
grid and to discourage subjects from predicting the locations of the gratings, such
that subjects’ attention would be directed to both orientation features that were
spatially interleaved throughout the grid. Similar to Herrmann et al.18, the nine
grid cells closest to fixation were intentionally left out such that subjects needed to
distribute their attention throughout the grid instead of biasing towards the
innermost locations. Each trial started with a 300 ms fixation point. Then the two
grating arrays were presented for a random duration between 500 and 1000 ms to
minimize potential expectation effects of an upcoming resetting cue. The resetting
cue was a 200 ms contrast increment (Δ= 0.2), which could presumably reset the
attentional process such that we could examine the moment-by-moment neural
representations of the orientation features with reference to a common temporal
marker. Similar resetting cues have been employed in previous studies to
investigate the temporal dynamics in multi-target attention10,12–14. It is important
to note that the contrast increment occurred with all gratings in one array rather
than in a discrete location. After resetting, the two grating arrays remained on the
screen for 1000–1250 ms before they were replaced by a 100 ms probe comprising
the same number of gratings oriented at approximately either 45° (right tilted
probe) or 135° (left tilted probe). Subjects were fully aware of the cue validity (50%)
before the experiment, i.e., in half of the trials the probe orientation was
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approximately parallel to the cued orientation while in the other trials the probe
orientation was approximately perpendicular to the cued orientation. Gratings in
the probe went through the same two-step spatial randomization process as
described above to minimize location-based selection effects.

Subjects indicated whether the probe orientation was clockwise or
counterclockwise of its closest orientation in the two grating arrays. To prevent
subjects from holding a reference of the two orientations in memory and using the
reference for the task, we randomly introduced a small orientation jitter (±3°) in
some trials as in Herrmann et al.18 such that the observers were uninformative as to
which orientations (42°/138°, 45°/135°, or 48°/132°) would be presented in a trial.
Hence, subjects had to attend to the two orientations in each trial in order to
complete the task. Inter-trial interval varied randomly between 1000 and 1500 ms.
Subjects underwent a total of five blocks for the model training part and eight
blocks for the attention part in an interleaved order. Each model training block
contained 72 trials (12 for each of the 6 orientations) and each attention block
contained 60 trials (30 for each probe condition). Trial order was randomized in all
blocks. A two-up-one-down staircase procedure was used in each block to match
task difficulty across subjects.

MEG signal acquisition. Neuromagnetic signals were recorded continuously with
a 306-channel (204 planar gradiometers, 102 magnetometers), whole-head MEG
system (Elekta Neuromag TRIUX) in a magnetically shielded room. Raw MEG data
were offline band-pass filtered between 0.1 and 35 Hz, resampled to 250 Hz, and
baseline corrected using Fieldtrip55 before subsequent data analysis.

Optimal orientation pattern localization. For each subject, time-resolved orien-
tation decoding analysis was conducted on the data from the model training part
using linear supporting vector machine (libSVM) to localize the optimal orienta-
tion pattern. The optimal orientation pattern was defined as the MEG signals that
contained the largest amount of orientation information, i.e., the trial-wise vectors
of sensor responses that achieved the highest decoding accuracy. Seventy-two
sensors covering the occipital lobe that were labeled as Occipital in the MEG data
acquisition system were selected for data analyses24. Because orientation selectivity
is relatively weaker in higher-order brain regions56, inclusion of signals from these
regions might introduce additional noise. For each time point (from 250 ms before
to 1250 ms after stimulus onset), MEG data were arranged in the form of 360 × 72
matrix comprising 360 trial-wise vectors of sensor signals (60 for each orientation
category). A six-way decoder was trained to classify these vectors into one of six
orientation categories using a leave-one-block-out cross-validation procedure,
yielding a decoding accuracy time course for each subject. We extracted the trial-
wise vectors of instantaneous sensor signals at the time point with the highest
decoding accuracy, which formed the optimal orientation pattern (Fig. 1d). This
pattern was then used to train the IEM.

Reconstruction of the time-resolved orientation representation. According to
the assumptions of IEM, instantaneous sensor responses at a single time point
across trials could be expressed as a linear combination of the responses of six
orientation channels (from 15° to 165° in steps of 30°):

B ¼ WC; ð1Þ
where B is the matrix of sensor signals at a given time point (72 sensors-by-N
trials), W is the matrix of linear weights for the orientation channels (72 sensors-
by-6 channels), and C is the matrix of channel responses (6 channels-by-N trials).
The IEM analysis involved two stages: model training and model-based recon-
struction. In the model training stage, the mapping from the MEG sensor signals to
the six orientation channel outputs (i.e.,W) was estimated using the optimal
orientation pattern that carried the richest orientation information. To this end, we
modeled the idealized tuning in each orientation channel as the half-sinusoidal
function raised to the fourth power peaked at the channel’s preferred orientation57

(Fig. 1b). Hence, for each trial in the model training sessions, the channel responses
could be predicted from these idealized tuning functions (Fig. 1c). Based on the
predicted channel responses, the weight matrix W could be estimated as

Ŵ ¼ B1C
T
1 C1C

T
1

� ��1
; ð2Þ

where B1 (72 sensors-by-360 trials) is the optimal orientation pattern matrix
obtained as described in the previous section, and C1 (6 channels-by-360 trials) is
the matrix of predicted channel responses for the presented orientation in each
trial, which was obtained from the idealized channel tuning functions. It is
important to note that estimation of W involved only the model training part data
and that the mapping was assumed to be invariant across the model training part
data and the attention part data. In the model-based reconstruction stage, the
weight matrix was then applied to the instantaneous sensor signals in the attention
part data (i.e., B2) at each time point to estimate the instantaneous individual
channel responses:

C2 ¼ Ŵ
T
Ŵ

� ��1
Ŵ

T
B2; ð3Þ

where B2 (72 sensors-by-480 trials) is the matrix of instantaneous sensor signals in
the attention part data and C2 (6 channels-by-480 trials) is the matrix comprising

column vectors of estimated trial-wise channel responses. These trial-wise vectors
were then averaged, yielding one vector of channel responses for each time point
(Fig. 1e). Hence, the orientation information in each trial is represented in the
channel space. To quantify to what extent the channel responses encode the
information of a given orientation, we computed the representational fidelity
metric as a mean of six unit vectors pointing in the polar angle directions corre-
sponding to the channels’ preferred orientations and weighted by the estimated
channel responses21

~z ¼
P

k ck~uk
6

; k ¼ 1; 2; ¼ ; 6; ð4Þ

where~z is the resultant mean vector, ck is the response of the kth channel, and~uk is
its corresponding unit vector. This mean vector was then projected onto a unit
vector pointing in the polar angle direction along the orientation of interest (the six
orientations in the model training part, 45° and 135° in the attention part),

R ¼ ~zj j cos ϕ; ð5Þ
where ϕ is the angle between the mean vector and the polar angle direction along
the orientation of interest. The resultant value R hence provide a quantitative
measure of the extent to which the information of a given orientation was encoded
in the channel responses, with a greater R value above zero indicating a stronger
representation of the orientation of interest (Fig. 1f). Using this approach, we
calculated the representation fidelity of the orientation of interest at each time
point (Fig. 1g), which yielded the orientation representation fidelity time course.
For the attention part data, we epoched the representation fidelity time courses
from 0 to 1000 ms after the onset of the resetting cue, removed the linear trends of
these epochs and performed spectral analysis using Fast Fourier Transform (FFT).
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orientation of the population response profile, which, according to the model
hypothesis, would rhythmically shift between 45° and 135°. The tuning competition
model was defined as the weighted sum of two exponentiated cosine functions that
characterized the tuning of the neuronal populations selective to the two attended
orientations (i.e., 45° and 135°):

f xjA1;K1;A2;K2; bð Þ ¼ A1e
K1fcos½ π

4�xð Þ��1g þ A2e
K2fcos½ 3π

4�xð Þ��1g þ b ; ð7Þ
where A1, K1, A2, and K2 denote the amplitude and the concentration of the two
tuning curves. For both models, parameters were varied to obtain the minimal sum
of squared errors between the population response profile and the model predic-
tion. To statistically compare the two models, we computed the root mean squared
deviation (RMSD) of the two fitted models for each time point:

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSE= N � kð Þ

p
; ð8Þ

where SSE is the sum of squared errors. N is the number of data points (i.e., 180),
and k is the number of model parameters. For each subject and each model, we
calculated the mean RMSD by averaging the model’s RMSD values across all time
points. A non-parametric Wilcoxon’s signed rank test was conducted to compare
the RMSD values of the two models across subjects.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this study are available from the corresponding authors
upon request.

Code availability
Codes associated with the findings of this study are available from the corresponding
authors upon request.
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