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Evidence accumulation has been the core component in recent development of

perceptual and value-based decision-making theories. Most studies have focused on

the evaluation of evidence between alternative options. What remains largely unknown

is the process that prepares evidence: how may the decision-maker sample different

sources of information sequentially, if they can only sample one source at a time? Here

we propose a theoretical framework in prescribing how different sources of information

should be sampled to facilitate the decision process: beliefs for different noisy sources

are updated in a Bayesian manner and participants can proactively allocate resource for

sampling (i.e., saccades) among different sources to maximize the information gain in

such process. We show that our framework can account for human participants’ actual

choice and saccade behavior in a two-alternative value-based decision-making task.

Moreover, our framework makes novel predictions about the empirical eye movement

patterns.
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been hypothesized that noisy evidence for each decision
accumulates until certain threshold is reached and the
corresponding decision is made (Ratcliff, 1978; Shadlen
et al., 1996; Platt and Glimcher, 1999; Gold and Shadlen, 2002;
Bogacz et al., 2006; Summerfield and Tsetsos, 2012; McGinty
et al., 2016). Such a computational approach has also been
adopted to study the process of value-based decisions (Krajbich
et al., 2010; Krajbich and Rangel, 2011; De Martino et al., 2012).
In one such study (Krajbich et al., 2010), human participants
were asked to choose between two snack items on a computer
screen. Participants could look at both items freely before making
the choice and their eye movement data were simultaneously
recorded. In most trials, participants’ fixation switched back
and forth between the two items for a few times before the final
choice was made. By assuming that the fixated and non-fixated
items were sampled asymmetrically and adopting an attentional
drift-diffusion model (aDDM), Krajbich et al. successfully
predicted participants’ choices based on the observed eye
tracking data. As in other previous studies, they concentrated
on how evidence is integrated to reach the decision threshold
given the fixation pattern shown by the participants, and aDDM
is just one form of the stochastic accumulation models that also
include sequential probability ratio test (Gold and Shadlen, 2002,
2007), race and leaky competing accumulator models (Usher
and McClelland, 2001), among others (Bogacz et al., 2006). In
most of previous studies, fixation data were taken as given and
experimentally measured saccade data (via eye-tracking) were
fed into the models to predict choice behavior (Krajbich et al.,
2010; Krajbich and Rangel, 2011; but see Towal et al., 2013). Here
we focus instead on the sampling assumption itself: What drives
the switching of fixation between options in a two-alternative
value-based choice task before the choice is made?

In the current study, we propose a Bayesian proactive
sampling framework to account for both the choice behavior
and saccade patterns in the same experiment run by Krajbich
et al. (2010). We assume that instead of a single quantity,
item attractiveness is internally represented as a probability
distribution along the value dimension, and the fixation duration
reflects the number of samples gleaned from such underlying
distribution to form a belief distribution (Cassey et al., 2013). In
this way, we formulate the evaluation process as Bayesian belief
updating based on samples from different information sources
rather than simple evidence accumulation (Cassey et al., 2013).
More importantly, inspired by the Informax algorithm (Butko
and Movellan, 2010), we assume that participants proactively
switch their fixation from one item to the other when the
marginal information gain of continuing the current fixation
becomes lower than that of switching. For instance, fixating
at one item (and gathering information/samples from it) for
too long might not be beneficial, since the participant would
have been very confident about how attractive the fixated item
is but still uncertain about its alternative, rendering inability
to choose between the two items. Thus, to make efficient
decisions, participants need to balance between getting a more
accurate estimation on the currently fixated item by continuously
sampling and potentially more information gain by switching
fixation to the other item. Similar ideas of active sampling have

also been proposed in the field of visual search and in perceptual
decision tasks (Najemnik and Geisler, 2005; Cassey et al., 2013;
Ahmad et al., 2014).

Similar to aDDM (Krajbich et al., 2010) and the value-plus-
salience model (Towal et al., 2013), our model well predicts
participants’ choice behaviors: for example, the decisions bias
toward the last fixated item and the item fixated longer.
Furthermore, our model predicts the distribution of fixation
durations. It does so from a Bayesian perspective and can explain
fixation patterns that previous stochastic accumulation models
such as aDDM were agnostic about: for instance, the fixation
duration is shorter in trials with greater absolute rating difference
between items and for later fixations within a trial. Most
importantly, our model views the saccade switching phenomena
as an active process to maximize information gain in order to
reach a decision more efficiently. Our approach thus provides
a unified framework in describing how different sources of
information are sampled proactively to facilitate the decision
process.

MATERIALS AND METHODS

Task
The experimental design and data collection were reported in
detail in Krajbich et al. (2010). In brief, 39 Caltech students
participated in the experiment and they were asked to refrain
from eating 3 h before the task. The experiment consisted of a
rating phase and a choice phase.

In the rating phase, participants were asked to rate 70 different
food items using an on-screen slider bar (“how much would you
like to eat this at the end of the experiment?”), on a scale of
−10 to 10. Any item receiving a rating lower than 0 would not
show up in the following choice phase so that all choice items are
motivationally relevant to the participant.

In each trial of the choice phase, participants were asked to
choose from a pair of food items (selected from the 70 items they
rated earlier) by pressing the left or right key on the keyboard
(Figure 1A) while their eye movements were simultaneously
recorded by the eye-tracker. The spatial locations of these snack
items were randomized across trials. There was no time limit for
response. In the end, participants were paid $20 show-up fee in
addition to the snack item they picked in a random trial of the
choice phase. For details on the choice phase we refer the readers
to the original paper (Krajbich et al., 2010).

Model
We propose a sampling-and-inference based model (Figure 1B)
to predict both the choice and eye movement patterns leading to
the decision. Instead of viewing gaze switches between options
merely as an evidence accumulation process, we reason that this
process is carried out to maximize the informational gain to
differentiate between two estimated value distributions. In this
section, we first briefly lay out the structure of the model, and
then describe the assumptions and predictions in detail.

On each trial, we assume that the participant goes through
a few gaze switch cycles, each of which contains information-
collection and decision-making steps. The participant’s goal is to
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evidence from the two items, and (b) updates their internal
beliefs about the values of the two items accordingly. During
the decision-making step, the participant (c) judges whether the
information collected is enough to warrant a decision, i.e., the
decision variable surpassing a threshold; and if so, a decision is
made. Otherwise, the participant (d) chooses which item to fixate
on next contingent on the relative information gain between the
two items.

(a) Sampling (With Bias)
In the beginning of each trial, the participant randomly decides
which item to look at [with 74% probability of looking at the left
item first and 26% of the right, based on the empirical fixation
probability (Krajbich et al., 2010)]. At any specific moment, the
two items are referred to as the fixated item (denoted by f )
and the non-fixated item (denoted by n). We assume that the
participant has no direct access to the true value of either item
(vf and vn) but can only obtain random samples from a Gaussian
distribution centered around the true value (t denotes the t-th
sample):

xf ,t ∼ N
(

vf , σ
2
f

)

(1)

xn,t ∼ N
(

γ vn, σ
2
n

)

(2)

For the fixated item (see Equation 1), the mean of the sampling
distribution is set to be the participant’s rating of that item in
the rating phase, under the assumption that their rating upon
contemplation for each item reflects an accurate and unbiased
estimation of the true item value. The variance of sampling
distribution is denoted by σ 2

f
(σ 2

f
= σ 2

0 , with σ0 being a free

parameter of the model). Similar to Krajbich et al. (2010), we
assume that the non-fixated item is perceived with distortion.
For simplicity, we scale the mean and variance of its sampling
distribution by factors γ (0 ≤ γ ≤ 1) and κ (σ 2

n = κσ 2
0 ; κ ≥ 1)

respectively to reflect the discounted and noisier representation
for the non-fixated item.

Sampling takes time and we simply assume the sampling time
follows a uniform distribution between 50 and 150ms, based on
the empirical observations in object recognition (Kirchner and
Thorpe, 2006) and visual workingmemory studies (Gegenfurtner
and Sperling, 1993) that it takes about 100ms for visual
information to be extracted or transferred from iconic memory
to visual working memory.

The samples xf ,t and xn,t will then be used to update the
participant’s belief of the values of corresponding items.

(b) Updating
We formulate the belief updating procedure according to the
Bayes’ rule. First, starting from the internal representation of item
values, we assume that the participant has a broad prior over the
values of two items at the beginning of each trial, centered around
zero with a variance of σ 2

i,0 = σ 2
0 , where i = f or n (fixated or

non-fixated).
With the samples obtained from both items, the participant

updates their beliefs about item values by combining the

likelihoods of samples (xf ,t and xn,t) and prior beliefs to form the
posterior beliefs according to the Bayes’ rule:

P
(

v̂i = v
∣

∣xi,1 : t , σ
2
i

)

∝ P
(

xi,t
∣

∣v̂i = v, σ 2
i

)

P
(

v̂i = v
∣

∣xi,1 : t−1, σ
2
i

)

(3)

where v̂i (i= f or n) is the value estimate. Since both the prior and
likelihood are assumed to be Gaussian, the participant’s posterior
beliefs are also Gaussian (Lee, 2012) (denoted by N (µi,t , σ

2
i,t)),

with their means updated according to

µi,t =
σ 2
i,t−1xi,t + σ 2

i µi,t−1

σ 2
i,t−1 + σ 2

i

(4)

after the tth samples.
The variance of the posterior belief about the fixated item is

σ 2
f ,t =

σ 2
f ,t−1

σ 2
f

σ 2
f ,t−1

+ σ 2
f

(5)

For the non-fixated item, we assume a variance expansion effect
(Bogacz et al., 2007; Bornstein et al., 2017). In particular, we
hypothesize that the participant becomes more uncertain about
the non-fixated item while they are fixating the other item so that
the variance of the posterior belief about the non-fixated item is
the same as Equation 5 except that an extra expanding factor λ

(>1) is introduced:

σ 2
n,t = λ

σ 2
n,t−1σ

2
n

σ 2
n,t−1 + σ 2

n

(6)

(c) Judging Whether Information Is Enough
for a Decision
Similar to the aDDMmodel in previous research (Krajbich et al.,
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decision making that the sampling time allocated to different
information sources should be proportional to their noise levels
(Cassey et al., 2013), we assume the probability of switching
to the non-fixated item is determined by a logistic function of
the uncertainty (standard deviation) ratio between the posterior
belief distributions:

PSwitch, t =
1

1+ e
−(ω

σn,t
σf ,t

+ω0)
(7)

where ω (> 0) reflects the sensitivity to the uncertainty ratio,
and ω0 reflects a bias on saccade (“repositioning”) tendency
respectively. Note that the fixated item becomes non-fixated and
vice versa (corresponding to a swap of subscripts f and n in the
equations) once the saccade switch occurs.

This saccade policy arises from our assumption that prior to
a final decision, the participant actively samples from the two
items so that they can reach a decision efficiently. Intuitively, if
the non-fixated item bears a much higher uncertainty relative to
the currently fixated one, the participant should switch fixation
to the non-fixated item to gain more information. The proactive
sampling continues until the decision threshold has been reached
and an explicit decision ensues.

Comparison With aDDM
As pointed out in previous literatures, Bayesian update with
sampling from Gaussian distributions (assuming equivalent
sampling variance for the fixated and non-fixated items and no
expansion of variance for the non-fixated item) is essentially
equivalent to the combination of evidence-accumulation and
Wiener process in aDDM (Bitzer et al., 2014). The main
difference between our work and previous studies, however,
is that we proposed a fixation-switch policy based on active
sampling theory, which predicts the patterns of both fixations and
the final choice, whereas Krajbich et al. (2010) used the empirical
fixation patterns to derive the choice pattern.

Simulation
Given the multiple dimensions of fixation data (the number of
fixations, the fixation duration, and other fixation patterns) and
choice behavior, it is therefore difficult to devise a single metric
to perform model fitting. Instead, we perform model simulation
under a particular set of parameter values to demonstrate that
a fully Bayesian approach can capture a variety of aspects of
participants’ data, especially fixation patterns which have been
largely overlooked in previous research. The parameters used in
the simulation are σ 0 = 4, δ = 0.005, γ = 0.1, λ = 1.1, κ = 2,
ω = 2.5, and ω0 = −6.5 (see Table 1 for a summary description
of model parameters). However, it is worth noting that we did
examine our model over a large grid on the parameter space
(Table 1). Our model simulation results did not strongly depend
on the particular values of the parameters, and the behavior and
fixation patterns in the Results section can be reproduced by a
large proportion of parameters on the grid space.

TABLE 1 | Model parameters and their range tested in the simulation.

Parameter Description Parameter range

tested in simulation

σ0 The standard deviation of the sampling

distributions.

[4 to 10]

δ The decreasing step of decision threshold. [0.0025 to 0.02]

γ The discounting factor on the mean of the

sampling distribution for the non-fixated

item.

[0 to 0.9]

κ The factor by which the sampling

distribution of the non-fixated item is

noisier than that of the fixated item.

[2 to 4]

λ The expanding factor of belief uncertainty

of the non-fixated item.

[1 to 1.25]

ω,ω0 The slope (sensitivity to uncertainty ratio)

and intercept (saccade cost) of the

parameters in the softmax decision

function.

ω: [1 to 4]

ω0: [−8 to −2]

RESULTS

Choice Patterns and Fixation Biases
We first show that our model accounts for the core model
predictions in the original paper (Krajbich et al., 2010). In the
decision phase, participants’ choices were consistent with how
they rated the items in the rating phase: the higher they rated
an item compared to its alternative, the more likely the item
would be chosen (mixed effect logistic regression slope β = 0.60,
p < 0.001; bars in Figure 2A). In our model, the value estimate
for each item is obtained from sampling the underlying option
value distribution, and this is reflected in the final choice (line
in Figure 2A), consistent with previous literature that suggested
choice predictions from aDDM can be incorporated in the
Bayesian framework (Cassey et al., 2013). This is similar to the
aDDM, where RDV was accumulated according to the (relative)
difference between the values of two items. Participants were
more likely to choose an item if they spent longer time looking
at it (β = 0.0017, p < 0.001; Figure 2B) and if they were
looking at it right before the choice selection (β = 0.61, p <

0.001; Figure 2C). Both effects were predicted by aDDM via the
assumption that the drift rate of non-fixated item is discounted.
Similarly, our model can explain both phenomena because it
assumes value discounting for the non-fixated item (Equation 2):
a longer fixation indicates a stronger discounting effect on the
non-fixated item, resulting in a lower evaluation for the non-
fixated item and thus a higher probability of choosing the fixated
one. Similarly, provided everything else being equal, the item of
last fixation enjoys more unbiased (undiscounted) evaluations
before the choice, hence the higher chosen rate. It was also
observed in the data that reaction time decreased as the absolute
rating difference increased (β = −191.6, p < 0.001; Figure 2D).
Evidence accumulation models such as aDDM explain this as it
takes longer time to reach a decision threshold when the drift
rate is smaller. Similar to aDDM (and as we noted previously,
there is a fundamental equivalence of Bayesian approach and
DDM Bitzer et al., 2014), our model interprets such behavioral
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FIGURE 2 | The model predictions of the behavioral patterns. (A) the probability of choosing the left item as a function of the rating difference between the two items

(left-right). Bars represent the experimental data (error bars represent 1 s.e.m across all participants); the black line represents the model simulation results; same for

(B,D). (B) probability that the left item is chosen as a function of its total fixation duration advantage over the right item. (C) probability that the left item is chosen as a

function of its rating advantage over the right item, conditioned on the last fixation. Yellow circles and the yellow line correspond to trials that participants looked at the

left item in the last fixation; blue circles and the blue line correspond to trials that participants looked at the right item in the last fixation; red circles and the red line

indicate the average of both. (D) reaction time as a function of absolute rating difference.

pattern as fewer samples are needed to separate the two value
distributions if the distance between them is larger.

Eye-Movement Patterns
Standard DDM approaches usually are agnostic about
participants’ eye fixation patterns (but see Towal et al., 2013).
For example, aDDM (Krajbich et al., 2010) sidestepped the
mechanism of saccade and instead used the empirical fixation
duration distribution as an input to the model to predict choice
behavior. Although standard DDMs predict the distribution
of total reaction time to be an inverse Gaussian distribution
(note that Krajbich et al., 2010 used the log-normal distribution
to capture their empirical saccade fixation data, probably due
to the time-invariant noise term in the aDDM), they remain
agnostic about the distribution of individual fixation duration
(but see Towal et al., 2013). In contrast, our model speaks directly
to participants’ saccade patterns as they are the intermediate
products between visual option inputs and the final behavioral
choices. Indeed, these data provide a test bed for our framework
and future efforts that explicitly model the eye-movement
patterns.

As shown in Figure 3A, the overall distribution of the
middle fixation duration is skewed toward right, which is
qualitatively captured by our simulation results. One interesting
finding in Krajbich et al. (2010) was that the fixation number
increased as the choice became more difficult, that is, when

the absolute value difference was smaller (β = −0.16, p
< 0.001; Figure 3B). The aDDM model in Krajbich et al.
(2010) sidestepped this by sampling fixation durations from
separate empirical distributions conditioned on absolute rating
difference. In contrast, our model provides an intuitive and
natural explanation for this effect: as the task gets more
difficult (ratings of two items are closer), more samples are
needed to separate the two underlying distributions. However,
as more samples are taken from the fixated item, estimated
uncertainty of the non-fixated item increases due to the
forgetting effect. In order to make the choice with sufficient
confidence, participants need to switch fixations between two
items and evaluate them alternatively more often, resulting
in more fixations in total. In brief, our model predicts that
decision time and the number of fixations are intricately linked
together. Indeed, our model simulation confirms this intuition:
the simulation data predict the inverse relationship between
the number of fixations and absolute value difference (line in
Figure 3B).

Another finding that supports a proactive sampling model
is the fact that middle fixation duration was not correlated
with item value itself (β = −5.91, p = 0.15; Figure 4A), but
negatively correlated with absolute rating difference (β = −32.3,
p < 0.001; Figure 4B). Again, aDDM took this pattern as
given and used fixation durations directly sampled from the
empirical distribution conditioned on absolute rating difference
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FIGURE 3 | (A) The histogram of middle fixation duration and the model fit. Bars and line represent the empirical distribution and the simulated distribution,

respectively. The last bin contains all fixations longer than 3,000ms. (B) average number of fixations per trial as a function of absolute rating difference. Bars represent

the empirical data (error bars indicate 1 s.e.m. across participants); the line represents model simulation results.

FIGURE 4 | Factors that influence fixation duration. (A) middle fixation duration as a function of the item rating. (B) middle fixation duration as a function of absolute

rating difference between two items. (C) middle fixation duration as a function of the index of fixation (trials with only one fixation are excluded from this analysis). (D)

fixation duration by type. Middle fixations indicate the fixations that are not the first nor the last fixation in a trial. Bars represent the empirical data (error bars indicate 1

s.e.m. across participants); lines represent the model simulation results.

(Krajbich et al., 2010). In contrast, in our model, fixation switch
is determined by the comparison of the uncertainties of value
estimate of the two items, not the values themselves, so fixation
duration does not vary as a function of individual item ratings
(line in Figure 4A). When the rating difference between two
items is large, the decision threshold is easy to surpass, even with
a small number of samples. As a result, it is easier for a long
fixation (consisting of many samples) to lead to a final choice and
therefore become the final fixation. Thus, larger rating difference
corresponds to shorter middle fixation duration on average (line
in Figure 4B).

Another worth-noting pattern about middle fixation duration
is that it increased steadily throughout a trial (β = 58.8, p =

0.0018; Figure 4C). Since 96.9% of trials terminated within six
fixations, we focus on only the second to the fifth fixations
(excluding the first and last fixations). Our model is constructed
such that the fixation switching probability depends on the ratio
of uncertainties of the two value estimation distributions. Toward
the end of a trial, changes in the uncertainty ratio tends to
decrease, rendering lower likelihood of fixation switch and thus
longer fixations in later part of the trial (line in Figure 4C). It was
observed in Krajbich et al. (2010) that the first fixation of a trial
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was shorter than middle fixations [paired t test, t(38) = −9.33,
p < 0.001; Figure 4D] and they set up two separate empirical
distributions from which the model sampled first and middle
fixations respectively. Our model predicts this pattern (line in
Figure 4D) and sees it as a special case of the fact that fixation
duration increases within a trial. The reversal pattern of the last
fixation duration, however, is due to the “truncated” or premature
middle fixations: decision process terminates when the threshold
is reached despite whether current fixation would have continued
otherwise, which makes this final fixation shorter than it could
have been. Both aDDM and our model predict this phenomenon.

Relationship Between κ and λ

It might seem arbitrary to introduce both the noise ratio κ and
variance expansion factor λ in our model. At first glance, both
parameters can lead to the seemingly equivalent “expanding”
effect on uncertainty over the non-fixated item. However, even
though the noise ratio κ leads to a noisier sampling distribution
of the non-fixated item compared to the fixated one, getting
new samples still helps making value estimate more accurate
over time; in contrast, the variance expansion factor λ makes
value estimate more uncertain over time. A closer examination
of the fixation data reveals the necessity of both parameters:
the relationship between the probability of committing a choice
and the duration of fixation was modulated by the number of
fixations (Figure 5A). In a model without the variance expansion
effect (λ = 1), the participant will be more likely to commit a
choice when spending more time sampling from items. However,
the probability of making an explicit choice decreased as the
fixation duration increased when fixation number is big (>2).
The introduction of λ, due to its exponential form, creates the
competition between the exponentially expanding (expansion)
and hyperbolic updating (contraction) of non-fixated item
variance. An interesting derivation of this antagonism is that the
competition results depend on the fixation number because of the
different forms of expansion and contraction functions. Indeed,
our model simulation captures this dependence (Figure 5B),
providing additional evidence that variance expansion, or the
forgetting process is necessary to explain the fixation data.
Additionally, when κ = 1, the uncertainty of both items will
be the same throughout a trial, leading to a constant uncertainty
ratio and hence stable switch probability. If that is the case,
the middle fixation duration will be approximately the same
throughout a trial. However, as shown in Figure 4C, the middle
fixation duration increased as the trial proceeded, providing extra
evidence for the necessity of the noise ratio parameter κ .

DISCUSSION

The evidence accumulation model has witnessed its great success
in the past decades to account for the choice and reaction time
data in the field of perceptual decision making (Ratcliff, 1978;
Bogacz et al., 2006; Bogacz, 2007; Gold and Shadlen, 2007). In a
typical experimental setup where stimuli (e.g., randomly moving
dots) are presented together, the model predicts that participants
appraise stimuli passively until the evidence accumulation of
certain decision variable reaches a (predefined) threshold to

engender an explicit choice. Later studies using electrophysiology
mapped the integration function to neural activities in brain
areas such as lateral intraparietal cortex (LIP) and frontal eye
field (FEF) (Platt and Glimcher, 1999; Ditterich et al., 2003; Gold
and Shadlen, 2007). Recently, such a theoretical approach has
been adopted to study value-based decision where the typical
setup involves options displayed at different locations of the
visual field and eye movement data were also recorded (Armel
et al., 2008; Krajbich et al., 2010, 2012; Krajbich and Rangel,
2011; Cassey et al., 2013; Towal et al., 2013). In addition to
speed and accuracy data, the newly acquired saccade information
provides a novel venue to understand the underlying decision-
making mechanism. Indeed, it has been proposed that the choice
preference can be driven by the fixation duration on certain
option due to the asymmetric evidence accumulation between
fixated and non-fixated options, probably caused by attentional
bias (Krajbich et al., 2010, 2012; Krajbich and Rangel, 2011; Towal
et al., 2013; Tavares et al., 2017). Furthermore, the disruption of
such fixation leads to biased moral and value decisions (Armel
et al., 2008; Krajbich et al., 2010; Pärnamets et al., 2015). However,
the eye-tracking data also pose a theoretical challenge: what
drives the eye fixation in such tasks? Inspired by the optimal
sampling theory, in this work, we presented a Bayesian generative
model for eye-movement in a value-based binary choice task
(Yuille and Bülthoff, 1996; Summerfield and Tsetsos, 2012; Bitzer
et al., 2014). The model fits well to the participants’ choices, as
well as the choice biases induced by fixation and the effect of
decision difficulty. More importantly, it makes novel and testable
predictions of the fixation duration distribution and fixation
patterns as functions of option attractiveness ratings and the
index of fixation, some of which were reported in Krajbich et al.
(2010) and others are newly identified in the current work.

Eye movement has been reported to be causally linked with
valuation and choice generation in value-based decision making
(Armel et al., 2008; Krajbich et al., 2010; Krajbich and Rangel,
2011), but formal theories explaining why and how people make
eye movements during such decisions are lacking. The fact
that our model is capable of explaining reaction time, choice
and eye fixation data indicates that people might not passively
accumulate value or perceptual information as standard DDM
suggests; instead, they actively switch their fixations to maximize
information gain before committing to a choice decision. Similar
concepts such as Infomax algorithm have been introduced before
in perception decision making and the research area of artificial
intelligence (Butko and Movellan, 2010).

For simplicity, we omitted physiological details that might
constrain the physical speed of information processing and eye
repositioning cost. For example, it has been reported that the
activity delay between retina and the FEF in awake monkey is 75
± 10ms (assuming a Gaussian distribution), FEF and saccade 30
± 10ms, and LIP and saccade 90 ± 10ms (Wurtz and Goldberg,
1972; Schmolesky et al., 1998; Towal et al., 2013). Instead, we
assume a rather crude individual uniform sampling interval
between 50 and 150ms, and set repositioning cost as a free
parameter in the logistic function (as behavioral costs in Ahmad
et al., 2014). Surprisingly, our model is able to capture various
aspects of participants’ data despite the simplified assumption
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FIGURE 5 | The proportion of fixations being the last of a trial, as the function of fixation duration and the index of fixation. (A) data. (B) model simulation.

above, proving the robustness of such a quantitative approach.
Of note is the discrepancy between our model predictions and
fixation data in Figure 5, where the model overestimates the
probability that a trial terminates over only one fixation (blue
curves). The first fixation is unique since our model assumes that
participants are able to sample from both options, irrespective
of current fixation location, potentially due to rumination
and endogenous attention. However, during first fixation, it is
impossible for participants to ruminate on an option they have
not yet observed. So, it is plausible that the cognitive mechanism
of sampling from the non-fixated item can be inherently different
during the first fixation (before the participant has the chance
to look at the alternative item for the first time), compared
to later fixations. We decide to keep the model simple and
concise such that it can be generalized to other decision
contexts.

A few recent studies also examined the eye fixation pattern in
value-based decisions (Cassey et al., 2013; Towal et al., 2013). For
example, Towal et al. (2013) suggested that the combination of
visual salience and value of different options drives the fixation
switch, which further helps shape participant’s actual choice.
Item values are therefore used twice in predicting choice. This
view is in contrast with earlier research that advocated the
reverse causality between fixation duration and value difference
(Krajbich et al., 2010). Ourmodel challenges this view and instead
proposes that eye fixation switch acts as an active information
gathering process by comparing the levels of uncertainties
between two estimated value distributions.

The newly added dimension of fixation pattern data, in
addition to the traditional speed and accuracy information in

perceptual and economic decision-making tasks, has provided an
exciting testbed for candidate decision theories that emphasize
the interplay between eye-movement and choice selection. Our
model is among the first to provide a unified framework
to account for different levels of complexities in the fixation
pattern data and can be easily extended to multiple option
paradigms.
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