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People with schizophrenia exhibit impairments in target-speech recognition (TSR) against
multiple-talker-induced informational speech masking. Up to date, the underlying neural
mechanisms and its relationships with psychotic symptoms remain largely unknown.
This study aimed to investigate whether the schizophrenia-associated TSR impairment
contribute to certain psychotic symptoms by sharing underlying alternations in cortical
gray-matter volume (GMV) with the psychotic symptoms. Participants with schizophrenia
(N D 34) and their matched healthy controls (N D 29) were tested for TSR against a
two-talker-speech masker. Psychotic symptoms of participants with schizophrenia were
evaluated using the Positive and Negative Syndrome Scale. The regional GMV across
various cortical regions was assessed using the voxel-based morphometry. The results of
partial-correlation and mediation analyses showed that inparticipants with schizophrenia,
the TSR was negatively correlated with the delusion severity, but positively with the GMV
in the bilateral superior/middle temporal cortex, bilateral insular, left medial orbital frontal
gyrus, left Rolandic operculum, left mid-cingulate cortex, left posterior fusiform, and left
cerebellum. Moreover, the association between GMV and delusion was based on the
mediating role played by the TSR performance. Thus, in peopl
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INTRODUCTION

Impairments in speech and thought processes have
been considered as critical characteristics in people with
schizophrenia (1–4). It has been suggested that investigation
of the relationship between deficits of perceptual/cognitive
processes and typical symptoms of schizophrenia is important for
understanding the nature of this disorder (5–7). Since impaired
inhibitorymechanisms at the neurobiological level in people with
schizophrenia are associated with certain psychotic symptoms
reflecting the incapability of adequately processing multiple
inputs at the perceptual level (8–10), it is of importance to know
whether deficits of perceptual/cognitive processes and certain
symptoms in people with schizophrenia share the same or similar
underlying neural substrates associated with impaired inhibitory
processing.

Previous studies have shown that in adverse listening
environments with multiple talkers, both people with first-
episode schizophrenia and people with chronic schizophrenia
exhibit a much larger difficulty in target-speech recognition
(TSR) against informational speech-on-speech masking than
their matched healthy controls (11–15), suggesting that the
augmented vulnerability of TSR to irrelevant informational
disrupting inputs can be used as a cognitive marker of
schizophrenia. On the other hand, certain psychotic symptoms
are also related to the reduced inhibition of irrelevant disrupting
inputs (8–10). Up to date, whether the schizophrenia-related
vulnerability of TSR to informational masking is associated
with certain psychotic symptoms has not been reported in the
literature. One research strategy for this issue is to investigate
whether the vulnerability of TSR to informational masking and
certain psychotic symptoms share the same or similar underlying
neural substrates.

It has been known that the superior temporal gyrus
(STG) is involved in not only processing of speech signals,
but also informational masking of speech signals (14, 16–
18). Also, the middle temporal gyrus (MTG) is involved in
retrieval of auditory content-priming information during speech
recognition against informational masking (14) and is a critical
hub for sentence-level processing (19). Moreover, the inferior
and middle frontal gyri, cingulate cortex, insular, and the
cerebellum are all involved in processing of attended speech
(12–15, 20, 21). Thus, structural/functional deficits of these
cortical regions are likely related to impairments of TSR against
informational masking in people with schizophrenia. As to
psychotic symptoms in people with schizophrenia, the lateral
temporal and the ventral frontal areas are associated with positive
symptoms, especially delusions (22–24). Also, dysfunctions in
the insular and cerebellum are related to delusions of control
(i.e., self-produced actions are experienced as being externally
produced) (25, 26). Thus, it is of importance and interest
to know whether schizophrenia-related failures in filtering
distracting speech signals and/or capturing relevant speech
(which usually cause disorganization of speech-information
processing) are related to both the enhanced vulnerability
of TSR to informational masking and certain psychotic
symptoms.

Previous studies on abnormal brain structures in
schizophrenia have revealed the associations between impaired
perceptual/cognitive processing (27–36) and clinical psychotic
symptoms (28, 37, 38). Particularly, widespread reductions
of gray-matter volume (GMV) in temporal and frontal areas
are associated with dysfunctions of both cognitive control and
response inhibition (35, 38). Besides, the GMV in the frontal,
temporal, and parietal cortices in people with schizophrenia
is negatively correlated with the severity of delusion and
hallucination (27, 29, 38). Thus, encouraged by these previous
reports, this study was to measure the abnormal GMV in people
with schizophrenia (compared to that in healthy controls) and
examine the hypothesis that certain schizophrenia-induced
GMV alternations may underlie both impaired TSR and certain
psychotic symptoms.

More specifically, this study aimed to examine whether the
schizophrenia-related impairment of TSR against informational
masking is associated with certain psychotic symptoms, and
whether they share the common GMV alternations in certain
brain regions. Accordingly, Spearman partial correlations and
mediation analyses between GMV, TSR, and psychotic sympotms
(with covariates incuding sex, age, educational years, ill-duration,
and dosage of antipsychotics controlled) were conducted.

MATERIALS AND METHODS

Participants
Participants with schizophrenia were recruited from the
Guangzhou Huiai Hospital. They were diagnosed according
to the Structured Clinical Interview for DSM-IV (SCID-DSM-
IV) (39). All the patient participants received antipsychotic
medication during this study. Exclusion criteria: hearing loss,
alcohol and/or drug abuse, nervous system disease, a treatment
of the electroconvulsive therapy (ECT) within the past 6 months,
a treatment of trihexyphenidyl hydrochloride with a dose of more
than 6mg/day, and/or an age either younger than 18 or older than
59 years (14, 21).

Healthy control participants were recruited from the
communities near the Guangzhou Huiai Hospital. They were
telephone interviewed first and then were screened with the
SCID-DSM-IV as used for patient participants during clinical
interview. None of the healthy participants had a history of
Axis I psychiatric disorder as defined by the DSM-IV. Both
patient participants and their demographically-matched healthy
controls underwent both the behavioral testing and the structural
MRI scanning.

All participants (34 participants with schizophrenia and 29
healthy controls) were right-handed, and their first language was
mandarin Chinese. They did not show any pure-tone hearing
impairments for each ear at the frequencies of 125, 256, 512,
1,024, and 2,048Hz. Some of them also participated in our
previous study (21). Both the participants (including patient
participants and healthy controls) and the guardians of the
patient participants gave their written informed consent for
participation in this study. The procedures of this study were
approved by the Independent Ethics Committee (IEC) of the
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Guangzhou Huiai Hospital. The investigation was carried out in
accordance with the latest version of the Declaration of Helsinki.

Stimuli
Target-speech stimuli were Chinese nonsense sentences, which
are syntactically correct but not semantically meaningful
(providing none contextual support for recognizing a keyword)
(14, 21, 40). For example, the English translation of a Chinese
nonsense sentence is “One appreciation could retire his ocean”
(keywords are underlined). Each of the Chinese sentences has 12
syllables (also 12 characters) including three keywords with two
syllables for each.

http://www.fil.ion.ucl.ac.uk/spm/
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Wu et al. Delusion and Informational Masking of Speech

FIGURE 1 | Based on the auditory precedence-effect paradigm and the head-related transfer function (HRTF), the target speech andmasking speech were simulated
as being presented by each of the two spatially separated “loudspeakers” in the frontal �eld with the inter-source interval of 3 ms. Under the perceived spatial
co-location (PSC) condition (left panel), both the onset ofthe target sound and that of the masker sound presented from the right headphone led those from the left
headphone by 3 ms, leading to a perceptually fused target sound “image” and a perceptually fused masker “image” as comingfrom the same right location. On the
other hand, under the perceived spatial separation (PSS) condition (right panel), when the onset of the target sound presented from the left headphone led that from
the right headphone by 3 ms, and the onset of the masker sound presented from the left headphone lagged behind that from theright headphone by 3 ms, due to the
precedence effect, the perceptually fused target image wasperceived as coming from the left location and the perceptually fused masker image was perceived as
coming from the right location.

using the exponentiated Lie algebra (DARTEL) technique
(48). (3) To create the Jacobian scaled warped tissue class
images, both an affine transform of the population average
(DARTEL Template space) templates to the Montreal
Neurological Institute MNI space and smoothness with an
8mm full width at half maximum Gaussian kernel were
performed.

After the spatial pre-processing, the smoothed, modulated,
normalized GM volumes were entered into a two-sample two-
tailed t-test between the health controls and patients with
schizophrenia to create the group-mean map of abnormal gray
matter. The threshold for the T-value map was set at p < 0.05
(cluster-wise FWE corrected). Subsequently, a region of interest
(ROI) was defined as a sphere with 5-mm radius centered at
the peak voxel (Marsbar, http://marsbar.sourceforge.net) of each
cluster in the map of abnormal gray matter. Then, the mean
GMV within each of the identified ROIs for each participant was
calculated and extracted using FMRIB Software (https://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/).

Partial-Correlation and Mediation Analyses
Analyses were performed using SPSS 20.0 and R 3.2.3.
Independent sample t-test or Pearson’s chi-square test was
conducted to compare the characters between groups. Partial
Spearman correlation analyses were used to test the relationships
between GMVs, behavioral (TSR or unmasking effect) scores,
and psychotic symptoms in participants with schizophrenia, with
potential covariates (age, sex, educational years, ill-duration, and
dosage of antipsychotics) controlled. The Benjamini-Hochberg
standard false discovery rate (FDR) method was used for
correcting p-values for multiple comparisons.

Mediation analyses were used to investigate the indirect effect
of TSR on the link between the decreased GMV and the psychotic
symptoms in participants with schizophrenia, with covariates
controlled. The bootstrapping method was used to test the
sampling distributions (5,000 times resampling) of the indirect

http://marsbar.sourceforge.net
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles
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FIGURE 2 | (A) The group-mean target-speech-recognition threshold (µ) was signi�cantly higher (the higher theµ is, the poorer the speech recognition is) in the
group with schizophrenia (SCH) than that in the group of healthy controls (HC).(B) The unmasking effect (1µ) induced by the perceived spatial separation in the SCH
group was signi�cantly smaller than that in the HC group. In theSCH group, the bottom panels illustrate the partial regression plots for the signi�cant correlations
between the TSR threshold and the CMV-PANSS positive syndrome (C), CMV-PANSS-P1 (delusion)(D), and CMV-PANSS-G9 (unusual thought content)(E) with the
statistical controls for age, sex, education, ill duration, medication dosage, and CMV-PANSS-total. *p < 0.05; ***p < 0.001.

(FWE corrected) on the cluster level with a cluster-defining
threshold (CDT) of p D 0.001 (T D 3.23), uncorrected).

The GMV of each of the 18 brain ROIs was entered
into correlation and mediation analyses. The Spearman partial
correlation coefficients between the GMV and the TSR threshold,
and those between the GMV and the two CMV-PANSS positive
syndromes (CMV-PANSS-P1, CMV-PANSS-G9) are shown in
Table 2. In participants with schizophrenia, the correlation
between the GMV and the TSR threshold was significant
for 15 of the 18 ROIs (corrected p < 0.05). However, in
healthy participants no significant correlations between the TSR
threshold and the GMV were found for both these 18 ROIs
and other brain regions (with age, sex, and educational years
controlled).

Also, the correlation between GMV and CMV-PANSS-
P1 (delusion) was significant for 17 brain regions of
the 18 ROIs (corrected p < 0.05; Table 2). However, no

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles
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FIGURE 3 | (A) Brain regions with reduced gray-matter volume (GMV) in participants with schizophrenia, compared to their demographically-matched healthy
controls. A cluster-de�ning threshold (CDT) (p D 0.001; T D 3.23) and a cluster based FWE-corrected threshold (p D 0.05) was used. The map was overlaid on the
template from the Mango software (http://rii.uthscsa.edu/mango//index.html). (B) The mediating effects of the impaired target-speech recognition (TSR) on the
relationships between the decreased GMV and the delusion symptom in participants with schizophrenia. AdjustedR2, standardized regression coef�cients,p-values
and bias-corrected con�dence interval (95% CI) for the mediation effect were shown. Arrows with solid lines indicate thatthe effects were signi�cant, and arrows with
dashed lines indicate that the effects were not signi�cant. MCC, mid-cingulate cortex; mOFG, medial orbital frontal gyrus; RO, Rolandic operculum; STG, superior
temporal gyrus; STS, superior temporal sulcus, MTG, middletemporal gyrus; MTS, middle temporal sulcus.
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TABLE 2 | Coef�cients of spearman partial correlation between gray matter volume of rois, target-speech-recognition threshold(µ), and P1/G9 Score of CMV-PANSS in
participants with schizophrenia.

Brain region MNI coordinate Speech recognition P1-delusio n G9-Unusual-thought-content

r p p corr r p p corr r p p corr

L mOFG [� 5,44,� 6] −0.453* 0.016 0.039 −0.472* 0.011 0.032 � 0.400 0.035 0.089

L P Fusiform [� 26,� 45,� 12] −0.411* 0.030 0.042 −0.484* 0.009 0.032 � 0.391 0.039 0.089

L Cerebellum [� 36,� 50,� 27] −0.454* 0.015 0.039 −0.468* 0.012 0.032 � 0.397 0.036 0.089

L Cerebellum [� 27,� 47,� 2] −0.488* 0.008 0.039 −0.550* 0.002 0.032 � 0.536 0.003 0.054

L Insular [� 32,26,� 5] −0.479* 0.010 0.039 −0.485* 0.009 0.032 � 0.428 0.023 0.089

L MCC [� 2,29,33] −0.433* 0.021 0.039 −0.425* 0.024 0.032 � 0.355 0.064 0.089

L MTG [� 60,� 29,� 3] −0.429* 0.023 0.039 −0.437* 0.020 0.032 � 0.382 0.045 0.089

L OR [� 39,� 18,12] −0.406* 0.032 0.042 −0.396* 0.037 0.039 � 0.319 0.098 0.098

L OR [� 48,� 7,3] −0.403* 0.033 0.042 −0.432* 0.022 0.032 � 0.360 0.060 0.089

L STG [� 42,� 7,� 12] � 0.377 0.048 0.051 −0.457* 0.015 0.032 � 0.367 0.055 0.089

L STG [� 57,� 3,� 14] � 0.361 0.059 0.059 −0.487* 0.009 0.032 � 0.346 0.072 0.089

R mOFG [1,36,� 14] −0.431* 0.022 0.039 −0.428* 0.023 0.032 � 0.381 0.045 0.089

R Insular [33,23,� 8] � 0.380 0.046 0.051 −0.417* 0.027 0.032 � 0.325 0.091 0.096

R Insular (4, 20, 34) −0.399* 0.036 0.043 −0.441* 0.019 0.032 � 0.343 0.074 0.089

R Insular (2, 7, 39) −0.459* 0.014 0.039 −0.431* 0.022 0.032 � 0.352 0.066 0.089

R MTG [54,� 32,� 2] −0.426* 0.024 0.039 −0.417* 0.027 0.032 � 0.388 0.041 0.089

R MTG [65,� 24,� 6] −0.428* 0.023 0.039 −0.406* 0.032 0.036 � 0.362 0.058 0.089

R STG [59,� 15,� 8] −0.468* 0.012 0.039 � 0.336 0.080 0.080 � 0.334 0.083 0.093

mOFG, medial orbital frontal gyrus; MCC, mid-cingulate cortex; MTG, middle temporal gyrus; OR, olandic operculum; STG, superior temporal gyrus; L, left; R, right; P, posterior.
The p-value was obtained controlling for age, sex, education years, ill-duration, medication dosage of antipsychotics and total score of CMV-PANSS. Thepcorr was corrected by the
Benjamini-Hochberg standard false discovery rate (FDR) method. The bold emphases indicate signi�cant correlations corrected by the FDR method.*p < 0.05.

delusion severity for each of the 15 models (standardized β

ranged from 0.474 to 0.541, p-values ranged from 0.042 to
0.019).

Moreover, after the adjustment by the mediator of the
TSR and other covariates, the correlation between GMV
and delusion became not significant (standardized β ranged
from � 0.306 to � 0.406, p-values ranged from 0.215 to
0.080). Bootstrapping sampling (n D 5,000) confirmed that
the effect of GMV on the delusion severity through the
TSR was significant for each of the 15 models (both the
lower limit and the upper limit of the 95% bootstrap
confidence interval were below zero) (Figure 3B). Thus, the TSR
threshold (against informational speech masking) significantly
mediated the association between the delusion severity and
the GMV changes in the frontal cortices (left mOFG, and
left RO), temporal cortices (bilateral STG, bilateral MTG, and
left posterior fusiform), bilateral insular, left MCC, and left
cerebellum.

DISCUSSION

This study, for the first time, investigated the associations
between GMV, TSR against informational masking, and
psychotic symptoms in people with schizophrenia. The
results showed that the delusion severity and the TSR
threshold against informational masking were correlated
to each other and shared the common reduction of GMV
in the following brain regions: the bilateral STG/STS,

bilateral MTG, left posterior fusiform, left mOFG, bilateral
RO, left MCC, and left cerebellum. More importantly, the
TSR against informational masking played a mediating
role in the association between the GMV and the delusion
symptom severity, suggesting that the schizophrenia-enhanced
vulnerability of TSR to informational masking contributes
to the delusion severity due to certain brain-structure
impairments.

Speech Recognition Against Informational
Masking Is Negatively Correlated With
Delusion Severity and Unusual Thought
Content
This study for the first time reveals that in people with
schizophrenia the ability in TSR against informational speech
masking is negatively correlated with the severity of the
positive syndromes, including the delusion and unusual-
thought symptoms on the CMV-PANSS. In other words,
if a patient with schizophrenia has a higher threshold µ

for recognizing target speech (poorer speech-recognition
performance) against informational masking, this patient
has a higher severity of the delusion and unusual thought
content. Thus, the speech-recognition impairment under
informational masking conditions is useful for predicting
the delusion and unusual-thought severity in people with
schizophrenia.
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Target-Speech Recognition De�cits and
Delusion Share Certain Underlying
Pathophysiological Mechanisms
This study discovers that the delusion symptom severity is
associated with the reduced TSR against informational masking,
and the TSR mediates the association between the delusion
symptom and the reduced GMV in somce brain regions known
to be normally involved in not only processing of masked
speech (11–18, 20, 21) but also cognitive controls (51, 52).
Moreover, abnormal functions of these brain regions are related
to the risk of the delusion symptom (4, 27, 38, 53). Thus,
it can be suggested that the association between the GMV
loss in these brain areas and the impairment of TSR against
informational speech masking may reflect the deficiency in
speech “gating” (i.e., the failure in either filtering out distracting
speech streams or capturing relevant speech streams) in people
with schizophrenia. It should be noted that with mediation
analyses, the directional causes among GMV, CMV-PANSS, and
TSR can be only speculated.

In this study, beyond the lateral superior/middle temporal and
the ventral frontal areas, direct correlations between delusion
symptom, TSR (against informational masking), and GMV were
also observed for the left anterior MCC and left Rolandic
Operculum in participants with schizophrenia. It has been
suggested that functional impairments of these two brain regions
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